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Abstract—With the abundance of sites and the heterogeneity
in the network, optimal user-cell association which is a well
known open problem will become a more challenging issue.
Contrary to the current studies that address this problem for
convectional HetNets with massive MIMO deployments in HF
(high frequencies) ranges, in this paper we investigate user-cell
association problem for dense two-tier networks with massive
MIMO deployment both at macro and femto-tier operating in
HF and mmWave spectrum respectively. The association problem
modeled as a convex network utility maximization is a function of
the downlink user throughput and is solvable through load aware
user association schemes such as the centralized subgradient
and distributed user-centric game-theoretic based algorithms. We
show via extensive simulation results that both the centralized
and user-centric approaches almost equally outperform the
traditional association schemes, namely smallest pathloss and
maximum data rate, in terms of downlink user throughput
and load balancing. Our results exhibit average throughput
gains between 20 and 40% for the majority of users if massive
MIMO ultra-dense HetNet (UDHN) deployments are operated
in the mmWave spectrum as compared to existing HF bands
under the optimal user-cell association schemes. Contrary to the
existing load aware association schemes that preclude the effect
of bandwidth disparity in HF and mmWave bands, we show
that the optimal user-cell association algorithms when employed
with distinct bandwidths for each band yield higher average
throughput in a two-tier HF-mmWave UDHN.

Index Terms—Massive MIMO, mmWave network, HetNet,
user-association schemes, load balancing, proportional fairness

I. I NTRODUCTION

Massive MIMO (multiple-input and multiple-output) and
mmWave spectrum utilization have been identified as key
enabling solutions to achieve orders of magnitude more data
traffic as envisioned for 5G. Massive MIMO is a multi-user
MIMO technology where each base station (BS) is equipped
with an array of hundreds of active antenna elements to
communicate with single-antenna user terminals that are far
less in number as compared to the antenna elements at the BS.
On the other hand, given the shortage of available spectrum at
traditional cellular frequencies, mmWave spectrum (30 GHz
-300 GHz) can be utilized to increase the available spectrum
by 200 times as compared to presently allocated HF (sub 6
GHz spectrum) [1] [2]. Furthermore, the smaller wavelengths
at mmWave frequencies enable large antenna arrays and spatial
beamforming techniques [3] which provide array gains to

counter the larger free space attenuation. Due to their smaller
antenna form factors at mmWave frequency, massive MIMO
antenna arrays are a viable deployment option in UDHN
consisting of dense femto base stations (FBSs) tier underlaid
over the relatively sparsely deployed macro base stations
(MBSs).

User-cell association in UDHNs is a well-known problem,
primarily due to the intertwined objective functions, such as
coverage probability optimization [4], sum rate maximization
[5], joint user association and power control [6] and energy
efficiency [7]. The standard Reference Signal Received Power
(RSRP) based user-cell association offers a highly imbalanced
inter-tier load distribution in a massive MIMO UDHN due to
the large array gain in the MBS tier [8]. This consequently
demands incorporation of the load on rate characterization
for both inter and intra-tier offloading problem [9]. With the
advent of mmWave massive MIMO UDHNs, the user-cell
association is further complexified due to: 1) high sensitivity of
the mmWave to static blockages such as buildings, 2) increased
pathloss following the Friss free-space propagation model [10]
and 3) significant disparity in pathloss exponents for LOS and
NLOS scenarios [11].

Recently several advanced user-cell association schemes
have been proposed massive MIMO deployment in HF spec-
trum [12][13]. Given the contrasting beamforming designs and
channel blockage effects, how well these association schemes
work in a massive MIMO mmWave deployment at FBSs in
terms of the throughput gain remains terra incognita. To the
best of our knowledge, this paper is first attempt to investigate
throughput performance of the optimal massive MIMO user-
cell association algorithms in HF namely centralized subgra-
dient (henceforth referred as CS) [12] and distributed user-
centric [12] (henceforth referred as DUC) algorithms against
the more standard smallest pathloss (henceforth referred as
SPL) and max rate (henceforth referred as MR) schemes for
a mmWave massive MIMO UDHN. The contributions and
finding of this work are summarized below:
A. Contributions and Organization

• User-cell association in massive MIMO deployments
in mmWave based HetNets requires understanding and
incorporating the mmWave specific idiosyncracies of the
channel characteristics as well as practical beamforming



strategies for each tier in dense urban environments.
Keeping these factors in consideration, we adapt a sys-
tem model [12] that enables a comparative analysis of
the recently proposed CS and DUC schemes with the
traditional approaches from the non-Massive MIMO era.

• Contrary to the user-cell association approach in [12]
which is based on the optimization of bandwidth nor-
malized user throughput, we incorporate the effect of
increased bandwidth available at mmWave spectrum in
the utility function that enables higher data rates and
consequently higher probability for user off-loading from
MBS to FBS tier.

• We perform a detailed comparative analysis of the four
user-cell association schemes for the mmWave massive
MIMO system and show that CS and DU outperform
the traditional algorithms only when higher bandwidth at
mmWave spectrum is taken into account.

• We also evaluate the throughput performance comparison
against the existing massive MIMO HetNet model [12] to
reveal that operating the FBSs at higher frequency spec-
trum (mmWave) enables throughput gains due to higher
spectrum availability and stronger pathloss degradation of
the interfering signals.

The rest of the paper organization is as follows: in Section
II, we describe the radio propagation model and the user-
cell association mechanism in the mmWave massive MIMO
deployment. Sections III focusses on the CS and the DUC
approaches for the optimization problem. In Section IV, we
analyze and compare the performance of these algorithms for
the massive MIMO deployment in HF and mmWave spec-
trum. The paper closes with conclusions and future research
directions in Section V.

II. SYSTEM MODEL

A. Radio Environment and Parameters

We consider a two-tier system with MBSs and FBSs
distributed across a 2-dimensional plane and operating in the
HF and mmWave spectrum respectively. We usej ∈ J =
{MBS1,MBS2, ..,MBSM}U{FBS1, FBS2, .., FBSF }
and k ∈ K = {1, 2, ..,K} to index the BSs (combination of
M MBSs andF FBSs) and users respectively. The users are
assumed to be distributed across the MBS tier foot-prints in
a non-homogenous manner with higher concentration within
specified hotzones. The FBS distribution is modeled using an
independent Poisson Point Process. This work assumes that
all users in the network are served with proportional fairness
(PF) and each user is served by only one BS at a time. The
notations used in this paper are presented in Table I.

Due to sensitivity of wireless channel, particularly at
mmWaves, to physical blockages, we estimate the LOS prob-
ability of an arbitrary user as a function of its distance with
its associated FBS. Using the 3GPP model [14] and LOS ball
model [15] for the HF and mmWave channels in an urban
environment respectively, we estimatePLOS(d) for each user
and assign pathloss exponentsαLOS andαNLOS accordingly.

We assume massive MIMO deployment both at MBSs and
FBSs withAj as the number of antennas andSj as the data
downlink stream capacity per time slot at any MBS / FBS
j. Using time division multiplexing (TDD), the BSs learn
about the channel coefficients via the pilots transmitted by the
associated users in the uplink. This allows each BS to serve
a set of up toSj associated UEs using linear zero-forcing
beamforming (LZFBF) and analog beamforming in MBS and
FBS tiers respectively. The beamforming gain is particularly
important for the mmWave channel to offset the free space
pathloss due to higher frequency and blockage effect.

For transmission, we consider OFDMA based scheme
where each user schedules transmissions over contiguous time-
frequency slots, also referred to as resource blocks (RBs) [16].
We use the block-fading channel model that captures the effect
of both large-scale and small-scale fading.gk,j which denotes
the pathloss and shadowing between an arbitrary BSj and
userk is considered constant across all RBs. Because the HF
and mmWave spectrum exhibit varying channel characteristics,
we have distinct small-scale fading models for MBS-user and
FBS-user channels. For the MBS-user link, the small-scale
channel coefficients which are same within every OFDM RB,
but not necessarily same across RBs, are modeled as Rayleigh
fading coefficients. In the case of FBS-user association, the
small-scale channel is modeled by independent Nakagami
fading for each channel with different coefficientsNL and
NN for LOS and NLOS links. Ifhk,j represents the small-
scale fading between a userk and a FBSj, then |hk,j |2 is
a normalized Gamma random variable. However, due to the
effect of channel hardening in massive MIMO systems [17],
we ignore the effect of small scale channel coefficients in our
model, i.e., we consider|hk,j | = 1, ∀ k ∈ K, j ∈ J .

We assume the load of an arbitrary BSj in a given time
slot as the number of users associated with it which can be
denoted by|Kj |. The instantaneous downlink rate for a user
k served by BSj , using the notations in Table 1, is given by
(see [18] for system details)

Rk,j = (1 −
Q

T
)
Tu

Ts
log2(1 + SINRk,j), (1)

where the SINR with LZFBF at a userk associated with a
macro BSj is adapted from [19] and given for a perfect CSI
at j by
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As the number of antennas in mmWave massive MIMO in-
crease, the implementation of digital beamforming techniques
like LZFBF becomes infeasible because of higher power con-
sumption and associated costs [20]. Therefore, using analog
beamforming, the SINR value at a userk associated with a
FBS j is given by [21][18]
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TABLE I
NOTATION SUMMARY

Notation Description
J,K set of BSs (MBSs, FBSs) and single antennaUEs
Sj number of data streams transmitted by BSj on a givenslot
rk throughput of userk

Rk,j instantaneous rate of userk serving by BSj
Aj number of antennas at BSj

Sj/Aj spatial load at BSj
gk,j pathloss and shadowing between BSj and userk
Q number of symbols per slot for uplinkpilots
T number of downlink OFDM symbols per timeslot
Pj transmit power of BSj
d distance between an arbitrary user its associatedBS
B total bandwidth
No noise power
NF noisefigure
kb Boltzmann’sconstant
TK temperature in degrees Kelvin
|Kj | number of users served by BSj
mik

number of migrations observed by userk in i-th iteration
p switchingprobability

where

Gl =
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Sl
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1
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(
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) , with probability
(
1 − 1√
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)
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In (1), Q is defined as number of symbols per slot for
uplink pilots andT is the total number of OFDM symbol
within each time slot.Tu

Ts
is the ratio of useful symbol duration

to the total symbol duration and considered unity without
any loss of generality. In (2) and (3),η ≥ 1, which is the
normalizing factor that guarantees that no BS infringes power
constraints [18]. (4) expresses the relative power radiated by
the interfering BSl in the direction of the userk served by
BS j [21]. Finally, the user throughput is expressed as

rk =
∑

j∈J

Bjαk,jRk,j , ∀ k ∈ K, (5)

whereαk,j = Sj/|Kj | ∈ [0, 1] represents the activity fraction
of RBs allocated to userk by the serving BSj. The system
noise power is given byN0 = NF kbTKB.

B. Problem Formulation for Optimal User Cell Association
In the conventional cellular wireless networks, association

decisions are performed based on RSRP (or RSRQ) levels,
where each user is connected to the BS which offers best
received power without considering the load of BSs. However,
this approach is not optimal, particularly if we consider
heterogeneity in the future wireless networks. A drawback
of this scheme is that even though FBSs are usually located
in areas with higher user densities (hot-zones), users tend to
connect to MBSs with max RSRP association because of their
higher transmit power as compared to FBSs. This calls for an
offloading or load balancing mechanism which forces the users
to associate with lightly loaded FBSs for efficient utilization
of the available RBs.

In massive MIMO systems, the large antenna arrays sig-
nificantly improve the SINR and subsequently instantaneous

rates due to array gains [21]. This motivates the use of MR
association scheme, in which an arbitrary userk is associated
with BS j based on the achievable downlink rate given by the
product of bandwidth allocated toj and the instantaneous rate
given by (1), i.e Bj ∗Rk,j . It is further shown in [12] that CS
and DUC based user-association schemes outperforms MR in
terms of 5 percentile throughput while MR still achieves higher
average throughput with the associated caveat of imbalanced
inter-tier load distributions. Whether MR still outperform CS
and DUC for mmWave UDHN remains an open question.
As mmWave network exhibits noise-limited behaviour, some
have proposed the SPL model (userk is associated with BSj
based on smallest pathloss; expressions for each scenario are
given in table II) for user-cell association [22]. For the sake
of completeness, we will compare the performance of the CS
(Sections II, III) and DUC (Section III) algorithms with these
baseline association schemes (Section IV).

We assume PF in the problem formulation in order to
allocate more RBs to users with stronger downlink channels.
In this regard, we assume the utility function asU(r) =∑

k logrk . The load aware throughput maximization problem
[12] that manifests a logarithmic utility function has been
adjusted to cater for inter-tier bandwidth disparity as:

max
α,r

U(r) (6a)

s.t.
rk ≤

∑

j∈Jk

Bjαk,jRk,j , ∀ k ∈ K (6b)

∑

k∈K

αk,j ≤ Sj , ∀ j ∈ J (6c)

∑

j∈J

αk,j ≤ 1, ∀ k ∈ K (6d)

rk ≥ 0, αk,j ≥ 0. ∀ k ∈ K, j ∈ J. (6e)

The constraint (6c) in the maximization framework limits the
total activities of the users attached to BSj to be within the
downlink data streamsSj . Similarly, constraint (6d) states that
in case of multiple BS associations to a single user, the limit
of the sum of activities of the all the BSs which serve a user
k cannot exceed unity. Note that (6d) makes the problem
(6) different from the classical unique association problem
formulation, in which each user can only be served by one
BS at max. However, the solution of (6) gives a feasible upper
bound benchmark to any user-cell association which enforces
unique association [12]. Finally, constraint (6e) ensures that no
user is suffering from zero throughput, i.e. all admitted users
have positive downlink data rates. The defined user association
problem (6) is known to be convex with the solution providing
an optimally feasible association configuration [12].

III. L OAD AWARE USER-CELL ASSOCIATIONSCHEMES

A. Langrangian Dual analysis and Centralized Subgradient
algorithm based solution

For the solution of (6), the Langrangian duality function is
similar to equation 10 in [12] and can be expressed as



L(α, r,ω,μ, ν) = U(r) −
∑

k

ωk(rk −
∑

j

Bjαk,jRk,j)

−
∑

j

μj(
∑

k

αk,j − Sj) −
∑

k

νj(
∑

j

αk,j − 1), (7)

wherer ≥ 0 andα ≥ 0 are the primal variables andω,μ, ν
are the Lagrange multipliers. The dual functionG in (8) is
the maximum of Lagrangian function overα and r and can
be minimized over the feasible set of dual variables to give
the optimal global solution of the convex problem (9).

G(ω,μ, ν) = max
r,α

L(α, r,ω,μ, ν). (8)

min G(ω,μ, ν), s.t. ω,μ, ν ≥ 0. (9)

The optimal solution of the convex problem in (9) that
maximizes the throughputrk is given by1

min
∑

j

Sjμj +
∑

k

νk −
∑

k

log(min
j

{
μj + νk

BjRk,j
}), (10)

where μ, ν ≥ 0. The modified dual problem in (10) is a
convex function of dual variables (μ, ν) since the second
partial derivatives with dual variableμ andν exists with a non-
negative value [21]. Based on above analysis, the CS solution
for the dual problem in (10) is given as Algorithm 1.

Algorithm 1 Centralized subgradientalgorithm
1: Establish some positive initial values for dual variable
vectorsμ andν and fix a sufficient number of iterationsimax

and step sizeti = a
b+i wherea > 0, b > 0.

2: Initialize the association of all users with a serving MBS
/ FBS. Eachk ∈ K decides its serving BSj ∈ J on current
dual variablesμi andνi according toji

k = argmaxj
BjRk,j

μj+νk
.

3: Calculate the number of users attached to the BSj for the
i-th iteration and let it beKi

j .
4: Update the dual variablesμi+1

j and νi+1
k according to the

current values of dual variables for the i-th iteration (μi
j and

νi
k) by taking the partial derivative of (10) with respect toμi

j

andνi
k respectively according to:

μi+1
j = max((μi

j + ti(
∑

k∈Ki
j
(μi

j + νi
k)−1 − Sj)), 0) and

νi+1
k = max((νi

k + ti((μi
j + νi

k)−1 − 1)), 0).
5: Go to step 2 and continue whilei < imax.

Algorithm 1 presents a globally optimal solution for the
convex dual problem (10) where during each iteration, the
dual variables (Step 4) provide association based on the max-
imum throughput for each user (Step 2). However, the results
observed may not be optimally feasible but nearby feasible for
the primal problem (6) because of the distinct characteristic of
the primal problem and limited number of iterations. The dual
variables obtained by subgradient algorithm are nevertheless
known to provide a near optimal solution for the primal
problem [6].

1In the interest of space, the detailed derivation is not provided and can be
obtained from the work in [12].

B. A Game Theoretical Distributed Approach for User-Cell
Association

While CS approach maximizes sum-throughput to solve the
optimization problem in (6), another approach which provides
near optimal performance relies on load aware distributed deci-
sion making for user-cell association [12][23]. In this work, we
formulate this distributed user-cell (DUC) association decision
process in a new context, i.e mmWave massive MIMO. The
modified DUC algorithm performs the association based on
the max-throughput, i.e. each user aims to associate with a
BS which maximizes its throughput in a selfish manner. In
contrast to CS, this distributed non-cooperative game theoret-
ical approach provides a low complexity implementation yet
near optimal solution to (6) [12].

Consider a pertinent scenario where each BS is assumed to
be associated with at leastSj users (indicating fully loaded
BSs) in the network. In the DUC approach, a user tends to
change its unique association configuration until there is no
BS which yields better throughput. At this saturation point, all
the users in the network reach an equilibrium point referred as
"Nash equilibrium" (NE). When the scheduler operates in PF
mode, every user uniquely reaches the NE if the distributed
algorithm is performed selfishly [23]. The condition for the
discussed NE using PF can be given by

BjSjRk,j

|Kj |
≥

BlSlRk,l

|Kl| + 1
, ∀ k ∈ K, ∀ j, l ∈ J, l 6= j. (11)

The DUC user-association algorithm is derived from [23] and
presented as Algorithm 2.

Algorithm 2 User-centric Distributedalgorithm
1: Initialize the iteration count and the number of migrations
observed by all users asi = 0 andm = 0 respectively. Fix a
sufficient number of iterationsimax and a realistic switching
probability p.
2: Every userk ∈ K updates its BS-association during each
iteration and switches from its current serving BSk to a
different BSl when the following conditions are met:
BlSlRk,l

|Kl|+1 >
BjSjRk,j

|Kj |
and rand< p(mik

+1).
3: During each iterationi, increment the migration countmik

for eachk wheneverk migrates from its current BSj to a
different BSl (i.e. when conditions from Step 2 are satisfied).
4: Go to step 2 and continue whilei < imax.

It is seen from Algorithm 2 that the increment in the migra-
tion countmik

prevents frequent concurrent BS migrations of
a user with an exponential decrease in migration probability
(Step 2).

IV. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of the four user-
cell association algorithms for massive MIMO deployment in
a two-tier network under two different set ups: 1) HF-HF
(both tiers operating in HF band) ; 2) HF-mmWave (MBSs
operating in HF while FBSs in mmWave bands. As we will see
in our results, due to the distinct channel properties of HF and
mmWave spectrum, for same user-cell association schemes, we
obtain contrasting gains under different deployment scenarios
under consideration.



A. Network Model
We consider a downlink UDHN consisting of two MBSs

having 100 antennas each with 46 dBm transmit power and
randomly deployed 34 FBSs having 40 antennas each with
35 dBm transmit power in a rectangular region of dimensions
900m x 1800m. The MBSs are placed in the center of two
square areas identifying hot-zones (higher user concentration)
for the non-uniform user distribution in the simulation area.
Each hot-zone contains about 1/3rd of the total user-count
with the spatial distribution varying in each simulation run to
provide more accurate results. The FBS deployment is uniform
throughout the simulation area as shown in the network
snapshot in Fig. 1. The MBSs, FBSs and users are represented
by �, o and + respectively.

Fig. 1. Network Layout.

We assume an intra-cell interference free network by allo-
cating a set of 10 orthogonal pilots to be shared amongst the
MBSs whereas the FBSs share a different set of 4 orthogonal
pilots for channel estimation. A detailed list of simulation
parameters is presented in Table II.

B. Throughput performance of user-cell association algo-
rithms in mmWave massive MIMO

The throughput performance of the user-cell association al-
gorithms under consideration for the mmWave massive MIMO
UDHN is given in fig. 2. The 5 percentile throughput result in
fig. 2a shows that the modified CS and DUC algorithms out-
perform the baseline association schemes. MR demonstrates
the worst performance in terms of user throughput while figs.
2a, 2b and 2c reveal the indistinguishable performance of
the CS and DUC algorithms. In fig. 2d, we compare the
performance of the DUC and SPL by taking the ratio of their
respective throughput statistics and plotting the CDF of the
results obtained in each iteration. Gains are observed for each
of the data rate statistics presented in figs. 2a, 2b and 2c. For
instance, it is seen that for about 60% of the iterations, a gain
of 20% is achieved in the 5 percentile data throughput.

To demonstrate why incorporating the bandwidth during
user-cell association is indispensable for the HF-mmWave
system considered, consider fig. 3 which depicts the 5 per-
centile throughput when spectral efficiency is optimized in the
utility function maximization as done in [12]. It is clear from
figs. 2a and 3 that with the effect of bandwidth taken out

TABLE II
SIMULATION PARAMETERS

Parameter Value
Bandwidth,Carrier 800MHz

frequency of mmWaveFBS 38GHz
Bandwidth,Carrier 20MHz

frequency of HFMBS 2 GHz
Simulation areadimensions 900 m x 1800m

Mean number ofusers 3000
Q , T 3, 7

NF , TK , kb 7 dB, 290o Kelvin, 1.38x10−23 J/ Kelvin
Two-slope LOSpath 22log(d) + 34.02 + Xσ , d < 320m

loss model of HFMBS 40log(d) − 11.02 + Xσ ,320 < d < 5000m
σ = 4 dB

NLOS pathloss modelof 39.1log(d) + 19.56 + Xσ

HF MBS σ = 6 dB
Two-slope LOSpath 22log(d) + 34.02 + Xσ , d < 120m

loss model of HFFBS 40log(d) − 3.36 + Xσ ,120 < d < 5000m
σ = 3 dB

NLOS pathloss modelof 36.7log(d) + 30.53 + Xσ

HF FBS σ = 4 dB
Pathloss modelof 20log(4π/λ) + 10αLOS(orNLOS)+Xσ

mmWaveFBS LOS:σ = 4.6 dB, αLOS = 1.9
NLOS: σ = 12.3 dB, αNLOS = 3.3

PLOS(d) for mmWaveFBS min(18/d, 1)(1 − e(− d
36 ) + e(− d

36 ))

PLOS(d) for HF MBS min(18/d, 1)(1 − e(− d
63 ) + e(− d

63 ))
Transmit power ofMBS 46 dBm

and FBS respectively 35 dBm
Aj for MBS, FBS 100,40
Sj for MBS, FBS 10,4

userheight 1.5m
BS height FBS: 10 m, MBS:25m

p 0.1
FBS radius 40m

of the maximization function, CS and DUC perform worse
than the SPL. This is due to significant SINR reduction
specially for NLOS users that is compensated with higher
available spectrum at mmWave. Hence, the modification in the
optimization function in (6) is justified for our HF-mmWave
massive MIMO UDHN system model.
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Fig. 3. Throughput with spectral efficiency based user-cell association

C. Throughput gain with mmWave deployment at FBS tier
An interesting insight from our simulation results would

be to analyze if operating FBS tier at the mmWave where
there is a relative abundance of spectrum provides any notable
throughput gains. While the throughput gradient (not presented
in results due to limited space) showed that SPL had the
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Fig. 2. Performance comparison of user-cell association algorithms for mmWave massive MIMO using PF

largest throughput percentage increase (approx. 50%) when
the operating frequency is shifted from HF to mmWave, it is
clear from fig. 4 that even the optimal CS and DUC yield 30%
increase for almost half of the realizations. This consolidates
the practical viability of HF-mmWave co-existence in UDHN
massive MIMO systems.

Fig. 4. Comparison of HF-HF versus HF-mmWave network

D. Load Distribution of the user-cell association schemes

Fig.5 presents the load association of users with the MBSs
and FBSs under three user-cell association schemes. Note that
since CS and DUC give near identical throughput and user-
cell association patterns, we can only use one of these for
analysis. Fig. 5 plots the number of users associated with
each BS in descending order while clearly demarcating the

MBS and FBS tier association. In terms of offloading the
MBSs, the DUC scheme clearly outperforms MR and SPL.
MR association scheme exhibits the worst performance with
highest net loads on the MBS tier. The results in fig. 5b reveal
that DUC offers higher and more balanced user association
with the FBS tier which eventually results in higher system
throughput (see fig.2). While MR and SPL are blind towards
cell loads during user-cell association, the load aware CS and
DUC provide dual benefits of higher user throughput as well
as decongestion of MBS tier by using the per user throughput
as the association criteria.

V. CONCLUSION

In this paper, we present a comparative analysis of four
different user-cell association algorithms for an ultra-dense
multi-tier HetNet with massive MIMO deployment in both
HF and mmWave spectrum. The four user-cell association
algorithms analyzed in this paper include two optimal schemes
namely: 1) centralized sub-gradient (CS) throughput max-
imization based association and 2) distributed user-centric
game theoretic (DUC) based association. Though the basic
idea of both CS and DUC is inspired from earlier work [12]
[23], we have adapted the optimization problem with a modi-
fied utility function to incorporate idiosyncrasies of a mmWave
based network. The benchmark approaches used for analysis
include: 1) smallest pathloss (SPL) model and 2) max rate
(MR). We investigated different key performance indicators
including 5 percentile throughput, average throughput and
inter-tier load distribution. Results indicate that both CS and
DUC association algorithms outperform the baseline schemes
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by virtue of higher throughput and efficient MBS off-loading.
While the DUC association almost matches the performance of
the CS approach, the simplicity in its implementation without
requiring centralized optimization renders it as a suitable
candidate for user-cell association in future mmWave massive
MIMO networks.
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