
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2942485, IEEE Access

Digital Object Identifier

Mobile Edge Computing-Based Data
Driven Deep Learning Framework for
Anomaly Detection
BILAL HUSSAIN1, (Student Member, IEEE), QINGHE DU1, (Member, IEEE), SIHAI ZHANG2,
(Member, IEEE), ALI IMRAN3, (Member, IEEE), AND MUHAMMAD ALI IMRAN4,
(Senior Member, IEEE)
1Shaanxi Smart Networks and Ubiquitous Access Research Center, School of Information and Communications Engineering, Xi’an Jiaotong University, Xi’an

710049, China.
2Key Laboratory of Wireless-Optical Communications, Chinese Academy of Sciences, University of Science and Technology of China, Hefei 230026, China.
3School of Electrical and Computer Engineering, University of Oklahoma, Tulsa, OK 74135 USA.
4M. A. Imran is with the School of Engineering, University of Glasgow, Glasgow, G12 8QQ, U.K.

Corresponding author: Qinghe Du (e-mail: duqinghe@mail.xjtu.edu.cn).

The research reported in this paper was supported in part by the National Natural Science Foundation of China under the Grant No.

61671371 and the Fundamental Research Funds for the Central Universities.

ABSTRACT
5G is anticipated to embed an artificial intelligence (AI)-empowerment to adroitly plan, optimize and

manage the highly complex network by leveraging data generated at different positions of the network

architecture. Outages and situation leading to congestion in a cell pose severe hazard for the network.

High false alarms and inadequate accuracy are the major limitations of modern approaches for the

anomaly—outage and sudden hype in traffic activity that may result in congestion—detection in mobile

cellular networks. This indicates wasting limited resources that ultimately leads to an elevated operational

expenditure (OPEX) and also interrupting quality of service (QoS) and quality of experience (QoE).

Motivated by the outstanding success of deep learning (DL) technology, our study applies it for detection

of the above-mentioned anomalies and also supports mobile edge computing (MEC) paradigm in which

core network (CN)’s computations are divided across the cellular infrastructure among different MEC

servers (co-located with base stations), to relief the CN. Each server monitors user activities of multiple

cells and utilizes L-layer feedforward deep neural network (DNN) fueled by real call detail record (CDR)

dataset for anomaly detection. Our framework achieved 98.8% accuracy with 0.44% false positive rate

(FPR)—notable improvements that surmount the deficiencies of the old studies. The numerical results

explicate the usefulness and dominance of our proposed detector.

INDEX TERMS Cellular network, anomaly detection, call detail record, deep learning, big data analytics,

sleeping cell, congestion detection.

I. INTRODUCTION

TO address the manifold capacity thirst in upcoming gen-

eration of cellular systems (5G), researchers are actively

investigating advanced technologies: ultra-dense networks,

massive multiple-input multiple-output (MIMO) systems,

cognitive radios, etc. [1]. These will enforce radical changes

to the cellular infrastructure making it more complex; an

artificial intelligence (AI)-empowerment will therefore be

pivotal in many aspects to efficiently manage the network.

The AI-enabled features can leverage big data generated from

the network [2, Fig. 3] to solve network-related issues.

Each year in the US alone, more than $15 billion are

depleted in handling cell outages [1] that costs the network

operators in the form of operational expenditure (OPEX).

Cell outage has a special case called sleeping cell, in which

inferior services are provided by a cell to its users and it

experiences a total or partial deterioration without generating

any alarm—it behaves normal from the perspective of oper-

ation, administration and maintenance unit of the network.

Sleeping cell can emerge due to multiple reasons: hardware

failure due to a fault in antenna, cabling or other component

at eNodeB [3]; and random access channel (RACH) failure

VOLUME 4, 2016 1

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2942485, IEEE Access

due to RACH misconfiguration, firmware/software fault or

exorbitant load at eNodeB [4, Sec. 3].

Abrupt rise in user traffic of a cell can lead towards con-

gestion (circumstance with increasing traffic but relatively

smaller throughput to satisfy the demand, interrupting net-

work’s performance and user’s quality of experience (QoE)

[5]) if remedial actions are delayed [6]. Such actions may

include: offloading traffic to other base stations [7], allocat-

ing extra resources [6], and dynamic pricing in quality of

service (QoS)-enabled networks [8]. A precise congestion

discovery is fundamental for an effective congestion-control

mechanism. It’s indispensable for the QoS-enabled networks

providing services that assure high QoS to the end-clients

[8]. Sleeping cell and congestion, both can severely affect

user’s QoE that may consequently increase the churn rate

[1]; because annoyed users are more likely to switch network

provider rather than calling customer service [9]. It will

also result in revenue loss to the service provider if timely

detection and necessary action is delayed.

An anomaly is an observation that violates standard pattern

or considerably deviates from the overall norm of the data

[10]. In cellular networks, anomalies can have a contextual

meaning. Wang et al. [11] defined anomaly as a city scene

(highway, tourist area, railway station, etc.) that has unusual

network performance indicator values and characteristics, to

carry out network optimization. Papadopoulos et al. [12]

utilized billing-related information to identify anomalous

mobile devices that carryout attacks against cellular network.

In [13], a significantly deviated user QoE as compared with

the predicted QoE is defined as an anomaly, and is utilized

for network optimization.

In this paper, we treat and henceforth refer both network

performance-related problems—sleeping cell and soared

traffic that might result in congestion—as anomalies. Since

sleeping cell or possible congestion can lead to a situation

having unusually low or high cell traffic activity, respectively;

we use anomaly in cell traffic pattern as proxy for anomaly in

the network performance. Hence, we leverage subscriber call

detail records (CDRs) for the anomaly detection. Tradition-

ally, CDRs are compiled and maintained for administrative

use (such as, for keeping proof of user’s network usage for

billing purpose), but nowadays they are also exploited for

diverse purposes: Securing 5G networks against cyberattacks

[12], analyzing cell site [14], enabling energy efficient net-

works [15], and studying human mobility patterns [16].

Deep learning (DL) outperformed the performance of

many conventional ML techniques and accomplished break-

throughs in various domains: computer vision, natural lan-

guage processing, and genomics [18]. Additionally, mo-

bile edge computing (MEC)—based on decentralized com-

putation, network management, and storage, as compared

with centralized cloud computing architecture—has recently

gained attention for its potential utility in 5G networks to

push computation towards the network edges (e.g. access

points and base stations). It aims to relief core network

(CN) from executing heavy-computation tasks and enables

latency-critical and computation-intensive applications at

resource-constrained mobile devices by leveraging huge idle

storage space and computation power already available at the

network edges [19], [20]. We contemplate DL blended with

MEC can play a decisive role in the anomaly detection that

will in turn improve user’s QoE and network’s QoS, increase

customer retention, and reduce OPEX for the cellular opera-

tors.

This research addresses the detection problems in the

viewpoint of DL and MEC. We build upon our previous

work [21] and present an enhanced MEC-supported anomaly

detection framework, executed at each MEC server mon-

itoring a group of cells. The framework is based on L-

layer feedforward deep neural network (DNN) that relies

on real CDRs and aims to detect the anomalies with higher

accuracy and lower false positive rate (FPR). In contrast to

our rudimentary work [21], this extended research contains

the following additional features, it:

1. Proposes MEC-based framework in which com-

putation is offloaded to MEC servers, distributed

across the cellular network, for efficient and robust

anomaly detection.

2. Utilizes an advanced optimization technique known

as adaptive moment estimation (ADAM) as com-

pared with its predecessor known as momentum.

Comparative analysis of ADAM’s performance

with previously used optimization method is also

performed using various additional measures: error

rate, precision, recall and F1.

3. Introduces additional results to compare the train-

ing time of our model implemented by utilizing

different optimization techniques.

4. Presents preprocessing algorithm, and explains the

CDR data in more details with data visualization

and a sample of raw CDR dataset to fully describe

the DNN’s implementation.

Overall, this study makes the following contributions:

1. Applies an MEC-based DL framework that capi-

talizes on several modern DL techniques from the

literature, to attain optimal performance for each

cell and reliefs CN of heavy computation.

2. Exploits historical data to infer past user behavior’s

trend for anomaly detection in recently-collected

10-minute user activity log datum (test instance).

3. Integrates an extra feature by considering Internet

usage activity (neglected in the previous works)

besides call and SMS, for a more robust framework.

The remainder of paper is organized as follows. Relevant

work is summarized in Section II. Preliminaries to our DL

based anomaly detection framework are explained in Section

III. Framework’s implementation is described in Section IV.

Subsequently, results and framework’s performance evalua-

tion are discussed in Section V. Finally, discussion on results

and concluding remarks are drawn in Section VI.

2 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2942485, IEEE Access

Core
Network

Pre-
processing

Raw CDRs

Input layer
Hidden layers

Output layer

SMS-in

SMS-out

Call-in

Call-out

Internet
Traffic

Core Network

Edge Server
(ES) co-located

with eNB
eNodeB

Faulty
cell

Normal cell
monitored
by eNBs

eNB-1

eNB-2

eNB-3

eNB-4

eNB-1

eNB-2

eNB-3

eNB-4

eNB-3

eNB-2

eNB-1

eNB-4

(a) (b)

FIGURE 1. (a) System topology: The computation for anomaly detection is spread across the cellular infrastructure having a number of MEC servers (each
collocated with a base station) that monitor user activities of a group of cells (depicted by blue, green and gray colors) by analyzing their call detail records (CDRs).
The CDRs are generated at the core network (CN) and are sent to the relevant servers that perform data analytics. Upon detection of anomalous cell(s), the server
communicates the anomalous cell ID(s) with the CN to initiate remedial actions. (b) MEC server’s functioning: Raw CDRs are preprocessed to have a feature vector
x(i). The vector is then passed to a L-layer feedforward deep neural network (DNN) that finally produces a predicted output ŷ(i). Note, we exclude details on the
parameters (w[l]

ij and b
[l]
i) and also consider a single example for clarity.

San Siro
Stadium

1 100

100009901

201 300

9701 9800

FIGURE 2. Data visualization: The spatiotemporal data are divided spatially into 100 × 100 cells across Milan city and temporally into 10-minute logs for a total of
62 days starting from 1st Nov., 2013 to 1st Jan., 2014. (a) An overlay of the 10,000 cells with Milan’s map (taken from Bing Maps). Each cell has a 235 m side
length. A region, indicated by a red square, is zoomed-in for clarity. (b) Cell ID 5638, covering portion of a road alongside San Siro stadium, is shown. (c) and (d)
illustrates user traffic activities of the cell ID 5638 in terms of SMS and call (both outbound and inbound), and Internet, respectively.

TABLE 1. Sample of raw CDR dataset from 1st January, 2014.

Cell ID Time stampa

(milliseconds)
Country code Subscriber activitiesb

SMS in SMS out Call in Call out Internet
...

3621 1388539800000 39 0.628319 0.274365 0.137755 0.058992 10.355361

3621 1388540400000 0 0.136609

3621 1388540400000 39 0.374871 0.373152 0.147633 0.059278 15.282042

3621 1388541000000 39 0.265904 0.509475 0.000286 0.118844 12.445180

...

a Each entry represents beginning of a 10 minutes interval in Unix epoch. For example, 1388539800000 interprets
as Wednesday, 01 January 2014, 1:30:00 AM (GMT). We can calculate end of the interval by adding 600000
milliseconds to this value.

b Some entries are missing that indicates no activity is recorded for the specified field [30].

VOLUME 4, 2016 3

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2942485, IEEE Access

II. RELEVANT WORK
Current and old cellular networks treat anomaly detection as

an important issue due to its apparent benefits to the network

operators and the users. It is addressed in the literature

by using variety of methods—mostly by utilizing various

ML methods on some key performance indicators (KPIs) or

measurements collected via minimize drive testing (MDT)

feature of third generation partnership project (3GPP) release

10 [22].

Detection of sleeping cell engendered by hardware mal-

function in the base station was carried out in [3], [23]–

[26], in which catatonic sleeping cell (a cell in which user

activity completely halts) was focused. On the other hand,

[4], [27] oriented their studies to detect sleeping cell caused

by RACH failure, in which crippled sleeping cell (a cell in

which user traffic abates in contrast to normal) was targeted.

Imran et al. [2] reported 94% detection accuracy using k-

nearest neighbor-based anomaly detection model. Masood

et al. [28] proposed a deep learning(deep autoencoder)-

based detector utilizing signal to interference plus noise

ratio (SINR) and reference signal received power (RSRP)

values of neighboring and serving BSs (extracted via MDT

functionality). However, the above approaches only consider

spatial data collected for a single time occurrence that yields

instantaneous detection of sleeping cells; therefore, the result

could be transitory with a minute affect on QoS and may

disappear by the time it is corrected [29, Sec. IV C]. Apart

from sleeping cell, Ramneek et al. [8] worked on detection

of congestion for QoS-enabled networks.

In contrast, following studies dealt with the problems by

employing data analytics on CDR dataset and proposed a

lighter ML-based solution as their method utilized the ex-

isting data (CDRs) rather than KPIs; procurement of KPIs

demands additional resources that burdens the network [1].

Parwez et al. [6] applied k-means and hierarchical clustering

algorithms to detect soaring traffic (that may lead to conges-

tion) in a cell by analyzing past one week data. Although the

approach resulted in 90% accuracy, but it was time-inefficient

as past one week data were considered to find the anomaly.

Improving upon their work, [1] utilized a statistical-based

semi-supervised ML approach to detect sleeping cell (both,

catatonic and crippled) and the situation leading towards

congestion in past hour’s data (having records for outbound

and inbound call and SMS activities) by exploiting CDR

dataset that had information about past several week’s user

activities. They reported 92% accuracy; however, they also

gained 14% false positive rate (FPR)—such a high FPR

means that false alarms may waste a significant OPEX and

resources.

As compared with the above works, our MEC-based solu-

tion utilizes data analytics (by incorporating past data with

temporal features into the decision making, yielding in de-

tecting long-term anomalies rather the instantaneous ones)

and state-of-the-art techniques in DL literature to generate

maximum accuracy and minimum FPR by analyzing each

10-minute CDR data-segment. The provided solution is (1)

Algorithm 1 Data Preprocessing

Inputs: CDRDataset: Raw dataset containing subscriber ac-

tivities, recorded for each 10-minute duration and stored in

the form of 62 files, each file representing a single day.

CID: Identification number of the target cell.

TimeStampValues: Contains numeric values of the beginning

of every 10-minute time interval (in Unix epoch) during the

intended 3-hours range.

Output: Xtotal

Method:

1: for each file f in CDRDataset
2: Import file f and store its contents in a matrix.

3: Replace blanks with 0.0 (to avoid error in summing

NaN, in later steps).

4: Remove the column containing Country codes.

5: Update the matrix by storing entries only related to

CID.

6: Remove the column containing Cell ID.

7: for each timestamp t in TimeStampValues
8: Sum all inbound SMS activity values and store

them as SMSin.

9: Sum all outbound SMS activity values and store

them as SMSout.
10: Sum all inbound call activity values and store

them as CALLin.

11: Sum all outbound call activity values and store

them as CALLout.
12: Sum all Internet activity values and store

them as Internet.
13: Store SMSin, SMSout, CALLin, CALLout

and Internet as one example in a vector x.

14: Store example x as a column entry in matrix

Xtotal.

15: end
16: end
17: return Xtotal.

lighter for CN, as it is based on distributed deployment of

MEC servers that distributes computation for anomaly detec-

tion instead of burdening the CN; (2) agile, as it utilizes CDR

dataset instead of requesting addition data from the network;

(3) robust, as it incorporates an extra Internet activity feature,

apart from call and SMS activities; and (4) high-precision, as

it has lesser false alarms and higher accuracy.

III. PRELIMINARIES
A. TOPOLOGY OF SYSTEM, AND VISUALIZATION AND
CHARACTERIZATION OF THE DATASET
Topology of system, shown in FIGURE 1 (with functioning

of the MEC server) and fully portrayed in Section IV, is

established upon long term evolution - advanced (LTE-A)

cellular network [1, Fig. 1]. CDR dataset utilized in this study

was generated at LTE-A’s CN and made available by Telecom

Italia [30].

The geo-referenced spatiotemporal (CDR) data contain

4 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2942485, IEEE Access

over 319 million user-activity records for a 100 × 100
cells spread across Milan, Italy. An overlay map of these

10, 000 cells with Milan’s map is shown in FIGURE 2(a).

The dataset is temporally divided into 10-minute timestamps

for a two-months duration from 1st Nov., 2013 to 1st Jan.,

2014; provided in 62 files, each containing records of a

single day. Each file contains on average 5.15 million records

and each record contains five user-specific activity features:

SMS incoming, SMS outgoing, call incoming, call outgo-

ing and Internet usage. Some details pertaining to the sub-

scriber—phone number, location and exact number (or unit)

of each activity—are removed in order to preserve privacy.

However, the provided quantity of activities is proportional

to the real amount of activities [1]. A sample of the CDR

dataset is given in Table 1.

To visualize the dataset, we focus on cell ID 5638 that

covers an area close to San Siro stadium in western Milan

(FIGURE 2(a) and (b)). Since the measurements of SMS and

call activities (both inbound and outbound) have same scale

[30], we extract and combine them for each hour and 62 days,

illustrated in FIGURE 2(c). Similarly, the Internet activity is

depicted in FIGURE 2(d). The annotated anomalous traffic

activity spikes on 22nd Dec., 2013 correlates with an ongoing

soccer match [31]; the one on 1st Dec., 2013 is also due to an

ongoing match, and is also evident in the results of [1, Fig.

7(a)] and [6, Table 1].

B. DATA PREPROCESSING AND SYNTHESIS
For each cell, day, and 10-minute timeslot in a 24-hours

timeline; raw CDRs are pre-processed to extract the features

that are then merged to create a vector x(i) ∈ R
5 (here-

after, referred as an instance), where i is the index of the

example. DL model requires large number (hundreds or even

thousands) of examples to work on, that may correspond to

CDRs of more than a year; however, we only have a total

of 62 examples (for each timeslot and corresponding to 62

days). To overcome this hindrance and for data augmentation,

we consider all the examples in a 3-hours range as examples

belonging to a single 10-minute timeslot. This yields a total

of 1, 116 examples (6 examples per hour × 3 hours × 62
days) that are arranged in the form of a matrix Xtotal ∈
R

5 × 1,116. Since human activities vary during different hours

of a day; selection of a single 3-hours range would confine

the interpretation of our results for only that range. Thus

for a broader scope, we utilize three different ranges in our

experiments: morning, from 6 to 9 am; afternoon, from 11

am to 2 pm; and evening, from 5 to 8 pm. The preprocessing

method is summarized in Algorithm 1. The examples Xtotal

are synchronously shuffled to have an identical distribution

and to increase the effectiveness of the algorithm [32, Ch.

8]. We then divide them into training set with 781 examples

(70% of the total) and test set having the remaining 335

examples.

Deep neural network (DNN) utilized in our research is

based on supervised learning; hence, labeled dataset is com-

pulsory for training and testing the model. Since output label

y(i) ∈ R
1 (for each example in the training and test sets)

is missing in the CDR data, we synthetically generate it

by using Euclidean norm. An example x(i) is considered a

point in 5-dimensional Euclidean space. The corresponding

output label y(i) is marked 1 (anomaly) if the example’s norm

‖x(i)‖2 deviates more than the norm of one standard devia-

tion (SD) σSD ∈ R
5 from the mean μ ∈ R

5: ‖μ− σSD‖2 >
‖x(i)‖2 > ‖μ+σSD‖2; otherwise 0 (normal). Note, a higher

SD means inclusion of more points as normal and having

lesser anomalous points; this might not work well to detect

performance deviations of a cell and hence we choose one

SD. We can calculate the elements of mean and SD using the

standard equations from statistics. We also utilize train set

for this purpose. We arrange the corresponding labels of train

and test set examples to form matrices Ytrain ∈ R
1 × 781 and

Ytest ∈ R
1 × 335, respectively.

C. PERFORMANCE METRICS
We employed several metrics for our model’s performance

evaluation. Their values are calculated using the predicted

test set output Ŷtest ∈ R
1 × 335 and its comparison with the

actual test set labels Ytest; and by using information from the

confusion matrix [33], comprised of the following:

• True positive (T+ve): number of examples labeled

as anomalies by the algorithm (in the predicted test

set output) that are also anomalies according to the

test set labels.

• True negative (T−ve): number of examples marked

as normal and are actually normal instances.

• False positive (F+ve): number of examples misclas-

sified as anomalies.

• False negative (F−ve): number of examples misla-

beled as normal instances.

Using confusion matrix, we calculate the following per-

formance metrics: accuracy (prediction’s success rate), error

rate, precision (fraction of positive instances that are truly

positive), recall (fraction of T+ves from the total number

of positive examples), FPR (F+ves out of all the negative

examples), and F1 (weighted harmonic mean of the precision

and recall); by using the following equations [33]:

Accuracy =
T+ve + T−ve

T+ve + T−ve + F+ve + F−ve
, (1)

Error rate =
F+ve + F−ve

T+ve + T−ve + F+ve + F−ve
= 1−Accuracy,

(2)

Precision =
T+ve

T+ve + F+ve
, (3)

Recall =
T+ve

T+ve + F−ve
, (4)

FPR =
F+ve

F+ve + T−ve
, (5)

and

F1 = 2
Precision×Recall

Precision+Recall
. (6)

VOLUME 4, 2016 5

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2942485, IEEE Access

D. SOFTWARE
The preprocessing and results are generated by exploiting

MATLAB and the complete DNN is actualized using Python

(programming language). Experimentation is performed in a

commercial PC (i7-7700T CPU, 16GB RAM, and Windows

10 64-bit operating system).

IV. IMPLEMENTATION
In this section, we briefly discuss the implementation details

of L-layer feedforward deep neural network (DNN), inte-

grated in our anomaly detection framework and how it is

trained for each individual cell—optimally tuned in terms

of number of layers, number of units each hidden layer

contains, weight initialization strategy, regularization, and

optimization method to yield maximum performance. Once

trained, the framework residing in the MEC server can utilize

the DNN to detect anomalies in the testing phase: when

CDRs arrive after every 10-min duration. The framework

can occasionally re-train the network as the performance

degrades over time.

A. DEEP LEARNING BASED ANOMALY DETECTOR
We apply L-layer feedforward DNN having an input layer

l = 0, hidden layers from l = 1 to L− 1 and an output layer

L, illustrated in FIGURE 1(b), where L represents number

of (hidden and output) layers in the network. Each layer has

one or more units (represented by circles in the figure) that

uses a non-linear activation function to produce the output.

Functions like sigmoid, hyperbolic tangent (tanh), rectified

linear unit (ReLU), and leaky ReLU (LReLU) are thoroughly

discussed in our previous work [21]; while Swish—gated

version of sigmoid activation function—is a new function,

reported to yield better results as compared with ReLU [34].

It is mathematically expressed below:

Swish function:

g(z) = z × σ(z) (7)

where, σ represents the sigmoid function. Sigmoid function

is utilized in the output layer and one of the aforemen-

tioned functions is applied in the hidden layers. The model

schematics with forward and backward propagations are also

explained in [21]. Once the parameters (weights and biases)

are fine-tuned, the trained DNN uses forward propagation to

predict the output Ŷtest by utilizing the test set.

B. IMPROVING PERFORMANCE OF DNN
We leveraged different modern DL techniques in our frame-

work, described below, to improve and render optimal per-

formance.

1) Weight Initialization Methods
Gradient exploding or vanishing is a major problem faced

during training phase due to inappropriate weight initializa-

tion, that makes learning difficult for the model. Heedful

selection of initialization strategy can cure this and improve

Iteration: 1

= 0.5

= 0.5

= 0.5

= 0.5

= 0.5

= 0.5

Iteration: 2

FIGURE 3. Dropout on hidden layers of a 4-layer network during iterations 1
and 2. p is the retention probability.

DNN’s performance by assigning weight values that are

neither too small nor too large [17, Ch. 6]. We experiment

with the following weight initialization strategies: Common,

Xavier, and He (explained in details in [21]) in this study.

2) Regularization
A fundamental challenge to DNN is of overfitting, in which

the model performs well on training set but fails to generalize

to new examples. Regularization, which refers to modifica-

tion of the learning algorithm, is used to control overfitting

and reduce the test error [35]. L2 regularization, also known

as weight decay, is the most common type of regularization.

It penalizes the square values of the weights in the cost

function in order to drive all the weights to smaller values.

Smaller values lead to simpler hypotheses, which are most

generalizable [17].

Dropout [36] is another regularization technique in which

neurons (along with their connections) are randomly shut

down during training of a DNN; and hence at each iteration,

a different model is trained that uses only a subset of the

total neutrons. The dropped neurons do not contribute to

the training in both forward and backward propagations. A

better generalization to an unseen data can be achieved as

this technique prevents the network to have dependency on

any particular neuron by making its presence unreliable [37].

FIGURE 3 demonstrates dropout mechanism using a 4-layer

network (for simplicity).

Our experiments embed the above-discussed regulariza-

tion techniques in the DNN model.

3) Optimization Methods
ADAM [38] is one of the most effective adaptive learning

rate optimization algorithm for training a DNN that combines

ideas from momentum (described in detail in [21]) and RM-

SProp (another optimization method for the details of which,

readers can refer to [39]). ADAM uses the following update

rule for weight W [l]:

W [l] = W [l] − α
vcorrected
dW [l]√

scorrected
dW [l] + ε

(8)

where, vcorrected
dW [l] and scorrected

dW [l] (given below) are bias cor-

rections, of first moment and second raw moment estimates,

6 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2942485, IEEE Access

TABLE 2. Hyperparameters’ values utilized in this study for different optimization methods

Hyperparameters GD Mini-batch Mini-batch GD Mini-batch GD
GD with momentum with ADAM

No. of Iterations/Epochs 1000 1000 1000 75-400a

Learning rate α 0.0075 0.0075 0.0075 0.0075

Initialization He He He He

Mini-batch size 781b 64 32 64

Momentum β - - 0.9 -

β1
c - - - 0.9d

β2
c - - - 0.999d

a Some cells converged in lesser number of epochs as compared with others.
b Full batch size of the training set.
c Controls the exponentially weighted averages in ADAM.
d Suggested default values [32, Ch. 8].

respectively, to account for their zero initialization [32, Ch.

8], [38]; and ε is a small number added for numerical stability.

vcorrecteddW [l] =
vdW [l]

1− (β1)t
(9)

scorrecteddW [l] =
sdW [l]

1− (β2)t
(10)

where, vdW [l] and sdW [l] (given below) are exponentially

weighted moving averages of historical gradient and the

squared gradient, respectively; t counts the steps carried by

ADAM update; and β1, β2 ∈ [0, 1) are hyperparameters that

control the two averages.

vdW [l] = β1 vdW [l] + (1− β1) dW
[l] (11)

sdW [l] = β2 sdW [l] + (1− β2) (dW
[l])2 (12)

The update rule for bias parameter b[l] is similar to the

above rule. We implement ADAM in our DNN model and

compare its test performance (in terms of various metrics

mentioned in Sec. III-C) with gradient descent (GD), mini-

batch GD, and momentum. For this purpose, the hyperpa-

rameter values mentioned in Table 2 are used, along with

ε = 1 × e−8 (suggested default value [32, Ch. 8]). Addi-

tionally, we investigate their training time.

V. EXPERIMENTAL RESULTS AND PERFORMANCE
EVALUATION
We present various experimental results in this section.

Although the CDR dataset contains records pertaining to

10, 000 cells, our DNN model performs anomaly detection

for a single cell at a time. To demonstrate robustness and

transferability of our model, we present results based (aver-

aged) on randomly chosen 1, 000 cell IDs out of the total

10, 000 cell IDs (available in Milan dataset). In addition, we

also present results processed by using a small subset (up to

ten cell IDs) for a detailed analysis and comparison. Note

that mentioning of morning, afternoon or evening followed

by a cell ID indicates that the model is trained and tested on

a corresponding 3-hours range data (discussed in Sec. III-B).

TABLE 3. Performance statistics of our anomaly detector utilizing mini-batch
GD with ADAM and its comparison with Momentum

Metric Average over 1, 000 cell IDs
Momentum ADAM Improvement

Accuracy 90.44% 98.8% 8.36%

Error rate 9.55% 1.19% 8.36%

Precision 86.11% 99.07% 12.96%

Recall 84.54% 97.27% 12.73%

FPR 6.66% 0.44% 6.22%

F1 85.32% 98.16% 12.84%

A. NUMBER OF LAYERS AND HIDDEN UNITS
The performance of a DNN can vary across the spectrum

of L and n
[l]
h . In practice, framework would search for their

optimum values that yield maximum accuracy for each cell

by empirically evaluating their impact on the test accuracy

of our DNN. To demonstrate this, we vary L from 2 to 20

and n
[l]
h from 1 to 50 using data from cell IDs 1 (Afternoon

hours), 1943 (Evening hours), 5638 (Morning hours), and

9607 (Evening hours)—due to the inadequate space, we only

show outcomes of these four randomly chosen cell IDs.

Our empirical results in the form of heatmaps, illustrated

in FIGURE 4, elucidates the impact of various settings of

n
[l]
h and L on the test accuracy. We also highlighted three

particular examples signifying maximum accuracies. It can

be seen that deeper layer having moderate number of hidden

units yield the highest accuracy. Dual maximum accuracies

imply that one might be computationally efficient to attain

than other. For simplicity, we set L and n
[l]
h to 17 and 25,

respectively, for our further experiments (for all cell IDs).

B. ACTIVATION FUNCTIONS
We run our model with mini-batch GD having hyperparame-

ter values listed in Table 2, to find an activation function that

yields maximum performance. FIGURE 5 (top) and (bottom)

illustrates the effect of utilizing various activation functions

in terms of error rate by using a subset of total cell IDs

and 1, 000 cell IDs, respectively. We can clearly observe

that sigmoid achieved the feeblest performance with highest

error rate for most of the cell IDs in FIGURE 5 (top) while

VOLUME 4, 2016 7

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2942485, IEEE Access

FIGURE 4. Test accuracies for cell IDs 1 (Afternoon hours), 1943 (Evening hours), 5638 (Morning hours), and 9607 (Evening hours) for various configurations of
n
[l]
h (number of hidden unit(s) per hidden layer) and L (number of layers).

Swish also yielded overall poor performance that is evident

in FIGURE 5 (bottom). Interestingly, for cell ID 2321, all the

activations performed uniformly. Overall, ReLU surpassed

other activation functions as evident in both of the figures

and hence we choose ReLU for further experiments.

C. WEIGHT INITIALIZATIONS
We continue with our previous model configuration and the

randomly chosen cell IDs, and initialize weights according to

Common, Xavier, and He initialization methods (explained in

details in [21]). We also set ReLU activation in hidden layers

for this purpose, as discussed previously. FIGURE 6 exem-

plifies the impact of selecting various weight initialization

schemes on DNN’s test accuracy. We can observe that He

surpassed other initialization strategies and yielded highest

average accuracy.

D. OPTIMIZATION TECHNIQUES
The superiority of mini-batch GD with momentum and

ADAM over ordinary batch GD is clear in FIGURE 7.

Although, in cell ID 4671, momentum has slightly better

performance than ADAM but overall mini-batch GD with

ADAM surpassed all other optimization techniques. It ac-

complished highest accuracy, recall, and F1; and also, lowest

error rate and FPR in most of the cells. Note, for cell ID 7816,

ADAM achieved a perfect performance.

In Table 3, we report various performance measures of our

anomaly detector, averaged over the results from randomly

selected 1, 000 cell IDs, along with the improvement we got

by utilizing ADAM as compared with the momentum. As

compared with our previous work [21] in which we utilized

mini-batch GD with momentum for anomaly detection, we

achieved significant performance improvements by utilizing

mini-batch GD with ADAM in this paper.

E. TRAINING TIME
Another advantage of utilizing ADAM is faster training time

that is evident in FIGURE 8 in which we compare the

average training time of our model utilizing all the discussed

optimization methods. Mini-batch GD with momentum con-

sumes maximum training time, while ADAM deplete the

lowest, and is the most suitable optimization method.

VI. CONCLUSIONS AND INSIGHTS FOR FUTURE WORK
Performance-wise, our MEC-based DL framework eclipsed

the previous anomaly detection methods [1], [2], [6]. It can

potentially improve network’s QoS and user’s QoE; and trun-

cate OPEX for the network operators. Our proposed frame-

work accomplished 0.44% FPR (Table 3), a significantly

reduced value as compared with the reported 14% in [1]; and

98.8% accuracy, a great improvement as compared with the

reported 94% accuracy in [2].

Our study endorses the concept of harnessing the largely

untapped CDRs (using big data analytics) instead of utilizing

traditional measurements and analytical approaches for the

network analysis [1], [15]. Our research’s main innovation is

8 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2942485, IEEE Access

FIGURE 5. Impact of utilizing various activations in hidden layers on DNN’s
performance.

Average Accuracy vs. Weight initializations

Common He Xavier

Initializations

75

80

85

90

Av
er

ag
e

te
st

 s
et

 a
cc

ur
ac

y
(%

)

FIGURE 6. Effects of using various weight initialization techniques on DNN’s
performance.

the incorporation of the Internet activity feature (disregarded

in previous works [1], [6]) that makes our research more

robust as our DL framework can detect anomalies pertaining

to a situation when Internet activity swiftly rises/declines

but the call and SMS activities are normal. An example of

such situation could be an abruptly increased Internet activity

during a music festival inferring a necessity of additional net-

work resource allotment. In addition, MEC-based approach

reliefs core network from heavy computation tasks, offloaded

to various MEC servers spread across the network.

A deterrent in practical implementation of our deep learn-

ing approach is the requirement of deluge of examples to

extract a meaningful pattern in the CDR data; however,

utilizing larger dataset—the acquisition of which is another

issue due to privacy concerns—can surmount the difficulty.

We can then preprocess the dataset using more sophisticated

software: Apache Hadoop or Spark [1]. Another restraint on

fully employing our approach is the possession of labeled

data due to the supervised nature of our algorithm; affixing

fault data, generated at the core network and containing

historical alarms’ logs [2], with CDRs and then labeling them

accordingly can overcome this restraint.
The timestamp interval of 10 minutes is crucial for the

results and hence more variation could be tested in the

future studies to determine the impact of increasing the

time duration granularity to perform more coarse-grained

analysis, i.e. take three 10-min intervals instead of just one;

or the granularity can also be decreased to perform more

fine-grained analysis, i.e. by considering even smaller than a

single 10-minute interval (the practical LTE network can be

set to generate CDR dataset in such settings). Hence it will

be an interesting future direction that could be explored. In

this connection, our previous work considered [1] a 1-hour

interval instead of 10 minutes—we combined six 10-minute

timestamp activities—and detected anomalies in the 1-hour

user activity data by using semi-supervised machine learning

method. In the current research work, we however chose to

decrease the interval so that the anomaly detection could

be performed quickly and hence the remedial or diagnostic

actions could be taken sooner.
Because of the potential of upcoming cellular networks to

have an AI-empowerment, the implemented algorithms need

to be quicker, increasingly proficient and less perplexing:

future works can explore meliorative methods. We can also

extend our study for anomaly detection in Internet of things

(IoT) [40]; however, due to the limited resources (such as

power consumption) the IoT devices might have entirely

different activity pattern that will need more examination.

With rising fame of DL technology, which has an enormous

potential for utility in 5G networks, our work applies DL to

accomplish substantial performance betterments for abnor-

mality detection. This indicates reduction in OPEX for cel-

lular operators along with an improvement in the network’s

QoS and user’s QoE.

REFERENCES
[1] B. Hussain, Q. Du, and P. Ren, “Semi-Supervised Learning Based Big

Data-Driven Anomaly Detection in Mobile Wireless Networks,” China
Commun., vol. 15, no. 4, pp. 41-57, Apr. 2018.

[2] A. Imran, A. Zoha, and A. Abu-Dayya, “Challenges in 5G: how to

empower SON with big data for enabling 5G,” IEEE Netw., vol. 28, no.

6, pp. 27-33, Nov.-Dec. 2014.

[3] F. Chernogorov, J. Turkka, T. Ristaniemi, and A. Averbuch, “Detection of

sleeping cells in LTE networks using diffusion maps,” in Proc. IEEE 73rd
Veh. Technol. Conf. (VTC Spring), Yokohama, 2011, pp. 1-5.

[4] F. Chernogorov, S. Chernov, K. Brigatti, and T. Ristaniemi, “Sequence-

based detection of sleeping cell failures in mobile networks,” Wireless
Netw., vol. 22, no. 6, pp. 2029-2048, Aug. 2016.

[5] Sandvine, “Network Congestion Management: Considerations and Tech-

niques,” White Paper, 2015.

[6] M. S. Parwez, D. Rawat, and M. Garuba, “Big data analytics for user-

activity analysis and user-anomaly detection in mobile wireless network,”

IEEE Trans. Ind. Informat., vol. 13, no. 4, pp. 2058-2065, Aug. 2017.

[7] Y. Li, B. Shen, J. Zhang, X. Gan, J. Wang, and X. Wang, “Offloading in

HCNs: Congestion-aware network selection and user incentive design,”

IEEE Trans. Wireless Commun., vol. 16, no.10, pp. 6479-6492, Oct. 2017.

VOLUME 4, 2016 9

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2942485, IEEE Access

FIGURE 7. Influence of using different optimization methods on various DNN’s performance metrics.

Training time

21.93

14.51

4.05

3.28

0

5

10

15

20

25

Tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
) Momentum

Mini-batch GD
(Batch) GD
ADAM

Optimization Method

FIGURE 8. Average training time analysis of different optimization methods.

[8] Ramneek, P. Hosein, W. Choi, and W. Seok, “Congestion detection for

QoS-enabled wireless networks and its potential applications,” J. Commun.
Netw., vol. 18, no. 3, pp. 513-522, June 2016.

[9] P3 Communications, “Case Study: P3 insights help Swiss operator rise to

the top of the Mobile Network Pack,” Case Study, Aug. 2017.

[10] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”

ACM Comput. Surveys, vol. 41, no. 3, pp. 15:1–15:58, Jul. 2009.

[11] Y. Wang, Z. Wu, Q. Li, and Y. Zhu, “A Model of Telecommunication

Network Performance Anomaly Detection Based on Service Features

Clustering,” IEEE Access, vol. 5, pp. 17589-17596, March 2017.

[12] S. Papadopoulos, A. Drosou, and D. Tzovaras, “A Novel Graph-Based

Descriptor for the Detection of Billing-Related Anomalies in Cellular

Mobile Networks,” IEEE Trans. Mobile Comput., vol. 15, no. 11, pp. 2655-

2668, Nov. 2016.

[13] W. Sun, X. Qin, S. Tang, and G. Wei, “A QoE anomaly detection and

diagnosis framework for cellular network operators,” 2015 IEEE Conf.
Comput. Commun. Workshops (INFOCOM WKSHPS), Hong Kong, 2015,

pp. 450-455.

[14] J. Hoy, Forensic Radio Survey Techniques for Cell Site Analysis, Chich-

ester, UK: John Wiley & Sons, 2015.

[15] A. Zoha et al., “Leveraging Intelligence from Network CDR Data for In-

terference aware Energy Consumption Minimization,” IEEE Trans. Mobile
Comput., vol. 17, no. 7, pp. 1569-1582, July 2018.

[16] S. Jiang, J. Ferreira, and M. C. Gonzalez, “Activity-Based Human Mobility

Patterns Inferred from Mobile Phone Data: A Case Study of Singapore,”

IEEE Trans. Big Data, vol. 3, no. 2, pp. 208-219, June 2017.

[17] J. Patterson, and A. Gibson, Deep Learning. Sebastopol, CA, USA:

O’Reilly Media, 2017.

[18] Y. LeCun, Y. Bengio, and G. Hinton, “Deep Leering,” Nature, vol. 521,

no. 7553, pp. 436–444, May 2015.

[19] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A Survey

on Mobile Edge Computing: The Communication Perspective,” IEEE
Commun. Surveys Tut., vol. 19, no. 4, pp. 2322-2358, 4th Quart., 2017.

[20] E. Ahmed et al., "Bringing Computation Closer toward the User Network:

Is Edge Computing the Solution?," in IEEE Commun. Mag., vol. 55, no.

11, pp. 138-144, Nov. 2017.

[21] B. Hussain, Q. Du, and P. Ren, “Deep Learning-Based Big Data-Assisted

Anomaly Detection in Cellular Networks,” Proc. IEEE Global Commun.
Conf. (GLOBECOM), Abu Dhabi, UAE, Dec. 2018.

[22] W. A. Hapsari, A. Umesh, M. Iwamura, M. Tomala, B. Gyula and B.

Sebire, “Minimization of drive tests solution in 3GPP,” IEEE Commun.
Mag., vol. 50, no. 6, pp. 28-36, June 2012.

[23] J. Turkka, F. Chernogorov, K. Brigatti, T. Ristaniemi, and J. Lempiäinen,

“An approach for network outage detection from drive-testing databases,”

J. Comput. Netw. Commun., 2012.

[24] A. Zoha, A. Saeed, A. Imran, M. A. Imran, and A. Abu-Dayya, “A SON

solution for sleeping cell detection using low-dimensional embedding of

MDT measurements,” in Proc. IEEE 25th Annu. Int. Symp. Pers., Indoor,
Mobile Radio Commun. (PIMRC), Washington DC, USA, 2014, pp. 1626-

1630.

[25] A. Zoha, A. Saeed, A. Imran, M. A. Imran and A. Abu-Dayya, “Data-

driven analytics for automated cell outage detection in self-organizing

networks,” in Proc. 11th Int. Conf. Des. Reliable Commun. Netw. (DRCN),
Kansas City, MO, 2015, pp. 203-210.

[26] C. M. Mueller, M. Kaschub, C. Blankenhorn and S. Wanke, “A cell

outage detection algorithm using neighbor cell list reports,” in Proc. Self-
Organizing Systems 3rd Int. Workshop (IWSOS), Vienna, Austria, 2008,

pp. 218-229.

[27] F. Chernogorov, S. Chernov, K. Brigatti, and T. Ristaniemi, “Data Mining

Approach to Detection of Random Access Sleeping Cell Failures in

Cellular Mobile Networks,” arXiv:1501.03935 [cs.NI], Jan. 2015.

10 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2942485, IEEE Access

[28] U. Masood, A. Asghary, A. Imrany, and A. N. Mian, “Deep Learning

Based Detection of Sleeping Cells in Next Generation Cellular Networks,”

in Proc. IEEE Glob. Commun. Conf. (GLOBECOM), 2018, pp. 206-212.

[29] A. Asghar, H. Farooq, and A. Imran, “Self-Healing in Emerging Cellular

Networks: Review, Challenges, and Research Directions,” IEEE Commun.
Surveys Tut., vol. 20, no. 3, pp. 1682-1709, 3rd Quart., 2018.

[30] [Online] https://dandelion.eu/datagems/SpazioDati/telecom-sms-call-

internet-mi/description/, Accessed on: Sep. 1, 2019.

[31] [Online] http://www.chinadaily.com.cn/sports/2013-

12/23/content_17190655.htm, Accessed on: Sep. 1, 2019.

[32] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning, Cambridge,

MA, USA: MIT Press, 2016.

[33] R. Bali, D. Sarkar, B. Lantz and C. Lesmeister, R: Unleash Machine
Learning Techniques. Packt Publishing Ltd., 2016.

[34] P. Ramachandran, B. Zoph, and Q. V. Le, “Swish: A Self-Gated Activation

Function,” arXiv:1710.05941v1 [cs.NE], Oct. 2017.

[35] I. Gooffellow, Y. Bengio, and A. Courville, Deep learning, Cambridge,

MA, USA: MIT Press, 2016.

[36] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdi-

nov, “Dropout: A simple way to prevent neural networks from overfitting,”

J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929-1958, 2014.

[37] N. Buduma, and N. Lacascio, Fundamentals of deep learning. Sebastopol,

CA, USA: O’Reilly Media, 2017.

[38] D. Kingma, and J. Ba, “Adam: A method for stochastic optimization,” in

Proc. Intl. Conf. Learn. Representations. San Diego, USA, 2015.

[39] T. Tieleman, and G. Hinton, “Neural Networks for Machine Learning:

Lecture 6.5 RMSProp,” 2012.

[40] Q. Du, H. Song, and X. Zhu, “Social-Feature Enabled Communications

Among Devices Toward the Smart IoT Community,” IEEE Commun.
Mag., 2019.

VOLUME 4, 2016 11

