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Abstract—Cell planning (CP) is the most important phase in
the life cycle of a cellular system as it determines the operational
expenditure (OPEX), capital expenditure (CAPEX), as well as
the long-term performance of the system. Therefore, it is not
surprising that CP problems have been studied extensively for
the past three decades for all four generations of cellular systems.
However, the fact that small cells, a major component of future
networks, are anticipated to be deployed in an impromptu fashion
makes CP for future networks vis-a-vis 5G a conundrum. Fur-
thermore, in emerging cellular systems that incorporate a variety
of different cell sizes and types heterogeneous networks (HetNets),
energy efficiency, self-organizing network (SON) features, control
and data plane split architectures (CDSA), massive multiple input
multiple out (MIMO), coordinated multipoint (CoMP), cloud
radio access network (C-RAN) and millimeter wave (mmWave)
based cells plus the need to support internet of things (IoT) and
device-to-device (D2D) communication require a major paradigm
shift in the way cellular networks have been planned in the
past. The objective of this paper is to characterize this paradigm
shift by concisely reviewing past developments, analyzing state-
of-the-art challenges and identifying future trends, challenges,
and opportunities in CP in the wake of 5G. More specifically, in
this paper we investigate the problem of planning future cellular
networks in detail. To this end, we first provide a brief tutorial
on the CP process to identify the peculiarities that make CP one
of the most challenging problems in wireless communications.
This tutorial is followed by a concise recap of past research in
CP. We then review key findings from recent studies that have
attempted to address the aforementioned challenges in planning
emerging networks. Finally, we discuss the range of technical
factors that need to be taken into account while planning future
networks and the promising research directions that necessitates
the paradigm shift to do so.

Index Terms—HetNets planning, Energy efficient planning, 5G
network planning

I. INTRODUCTION

Research in cellular planning (CP) is older than the cellular
system itself [1], [2], [3]. However, the first generation of
cellular systems were planned almost manually as the focus
was on providing coverage to serve the elite of society only.
The gigantic subscription fees, low traffic loads, lack of
competition and relative abundance of spectrum at that time

meant not much effort had to be invested to optimize the
network plan. As the trend moved toward ubiquity of cellular
service, the foremost optimization objective that emerged was
to maximize the coverage while keeping the number of base
stations at a minimum [4], [5], [6]. This prompted the first
call for CP optimization techniques to be investigated and
raised the need for automated computer-aided CP tools [7],
[8] thereby triggering the academic and industrial research in
this area that has grown continuously thereafter. We can refer
to this initial era of CP research as classic CP that roughly
spanned over the decade of the 90s. Research in this classic
CP era can be broadly described as being mainly focused
on optimizing the location and number of base stations (BS)
while largely abstracting the parameter optimization of the
base station themselves.

Introduction of data services and, consequently, crowded
networks at the beginning of the new millennium meant
that operators had to tweak and optimize a large number of
BS parameters in the planning process to squeeze out all
possible bits of capacity [9], [10]. This strategy shifted the
focus of CP research from classic and relatively primitive
to a more advanced planning [11] approach that we can
refer to as holistic CP. In holistic CP, in addition to BS
locations, BS parameters such as number of sectors, azimuths,
tilts, transmission powers, pilot powers etc. were considered
while formulating and optimizing the CP problem [12]. This
era of holistic CP can be roughly mapped to the first two
to three quarters of the last decade. Gould [13] described
some challenges that CP engineers faced when doing holistic
CP. While holistic CP solutions with reasonable computation
complexity were still being sought [14], [15], [16], the advent
of LTE and LTE-advanced (LTE-A) at the beginning of current
decade again called for a major revamp of the CP paradigm.
Unprecedented demand for higher data rates combined with
projected proliferation of internet of things (IoT) mean new
technologies such as massive MIMO, smart femto cells [17],
[18], fractional frequency reuse [19], CoMP, C-RAN, and
mmWave had to be resorted to in emerging networks. While
adaptation of these technologies in 5G offers promising av-



enues for raising cellular system capacity, it put forth a whole
new set of challenges to the CP research community. In addi-
tion, in the wake of the rising cost of energy and environmental
awareness, energy efficiency became a newly added constraint
to the CP problem that asks for a significantly different, if
not totally new, approach toward CP [20]. Furthermore, in
the emerging socio-economic structure, the average revenue
per bit earned by the operators is diminishing. This trend
is pushing operators to rely on self organization network
(SON) features to minimize OPEX and CAPEX. While SON
is a promising paradigm that improves capacity, and reduces
total cost of ownership (TCO) for the network operators [21].
However, it remains unclear how the two paradigms CP and
SON, CP being too old and SON being too young, will fit
together in emerging networks such as 5G.

Regardless of physical layer waveform and spectrum band
adapted for 5G cellular systems, it is clear that the majority
of the 1000x target capacity gain must come from network
densification. Realizing the massive potential of network den-
sification by small cells, industry pundits have been forecasting
an explosive growth of small cells for the past few years.
However, to date, mass deployments of small cells remain
elusive mainly due to the fact that the ultra-dense deployment
of small cells comes with its own set of peculiar planning
challenges. The key challenge being how to plan and roll out a
heterogenous network that will contain unplanned deployment
of small cells.

In the backdrop of these recent developments, this paper
aims to analyse the state of the art in CP and identify the
challenges and opportunities therein in context of emerging
cellular networks such as 5G. Though this article provides a
concise review of selected literature on CP, its main objective
is not to provide comprehensive survey of literature. Instead
this article has following goals:

1) Provide a brief tutorial on CP process to highlight the
conflicting objectives and constraints that make CP one
of the most challenging problems in wireless communi-
cations. (Section II)

2) Provide concise and tabular recap of literature to guide
the reader to sources that have addressed different parts
of CP to date. (Section III)

3) Identify recent trends in CP such as energy-focused
planning, planning for traffic uncertainties and with
CoMP in mind. (Section IV)

4) Provide an overview of the models and techniques that
have emerged recently to improve CP such as models for
cell load, interference, BS location randomness, channel
variation, and total cost of ownership (TCO). (Section
V)

5) Identify the technical factors that make planning a het-
erogenous network (HetNet) different from macro-cell-
only networks and how these factors can be accounted
for in a new HetNet planning paradigm. (Section VI).

6) Finally, identify the prospects, challenges, and oppor-
tunities that lie in the CP paradigm in wake of 5G
and beyond. (Section VII). This section answers the
questions: what, why and how the CP paradigm will
change with the advent of C-RAN, M2M, D2D, control

and CDSA, Massive MIMO, and mmWave in 5G and
beyond.

Fig. 1 shows the contents, contribution, and layout of
this papers details

II. A BRIEF TUTORIAL ON PLANNING PROCESS

The cell planning process consists of three phases: pre- plan-
ning, or dimensioning; detailed planning; and post planning, or
optimization, as shown in Fig. 2. The output of the dimension-
ing phase is an approximate number of BSs required to cover
an area of interest. For a recent tutorial on the dimensioning
process, readers can refer to [22]. The detailed planning phase
allows determining the actual positions of the BSs within the
area to be served. In the optimization phase, which occurs after
the network has been deployed and is running, the network
performance is analyzed, potential problems detected, and
improvements made to enhance network operation [23]. This
paper focuses on the detailed planning phase. In this section,
we briefly review the CP process, including its objectives,
input and output parameters to the optimization process and
to the CP phases. We also give a simple analysis of the
complexity of the CP problem. This section aims to provide the
necessary background needed for the discussion in successive
sections.

A. Cell Planning Objectives

The objectives of CP heavily depend on the business strat-
egy of the operators. The coverage target for different services,
the pricing and throughput policies, regulatory constraints,
market share goals and competition are some factors among
many that define the CP objectives. Ultimately, CP objectives
can be boiled down to the following set of optimization targets
identified in the cell planning problem:

1) Minimize TCO. In addition to minimizing the overall
network cost, this objective may also include minimizing
economic costs related to deployment costs and param-
eter optimization.

2) Maximize capacity. For a single service, this objective
can be defined as the number of users who can be served
at one time. In the case of multi-service traffic, capacity
can be approximated in terms of global throughput.

3) Maximize coverage. This includes satisfying coverage
policy requirements for various services. Up Link (UL)
and Down Link (DL) coverage must be balanced. Both
traffic channels and coverage of common channels must
be considered.

4) Minimize Power Consumption. Health concerns have
motivated the radiated power minimization objective.
However, recent awakening of a desire for greener
wireless systems has added more depth to this objec-
tive. Consequently, power consumption, including fixed
circuit power as well as variable transmission power,
must be minimized.

5) Optimise handover (HO) zones. In a well-planned
cellular system, a certain proportion of the area of each
cell should overlap with neighboring cells to satisfy HO
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Fig. 1. Layout of the contents and paper contribution: The flow chart explains challenges , opportunities , dependencies and factors in planning future cellular

networks

conditions. HO zones are essential to guarantee continu-
ity of service between the sectors. It also strengthens the
radio link against fast fading and shadowing. However,
too much overlap may result in wastage of power, and
radio resources, and increase in interference and electro-
smog, making it a tricky planning objective.

B. Conflicting Nature of Multiple CP Objectives

Ironically, the CP objectives listed in Section II-A mutually
conflict, hence, giving rise to the immense research on CP in
past two decades. For example, maximizing the coverage and

capacity requires deploying more base stations, which in turn,
increases the network cost. Similarly, coverage maximization
contradicts the objective of reducing power consumption and
electro-smog. Regardless of which technique is adopted to
solve the CP problem, competing multiple objectives need to
be addressed, although this is often done implicitly rather than
explicitly. The main implication of having multiple objectives
is that a set of optimal solutions, rather than a single solution,
is obtained. Although several alternatives to cope with multi-
objectivity have been proposed in the literature, no approach
proves more prevalent [24].
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Fig. 2. Three phases of cellular network planning and optimization.

To cope with more than one CP objective, multi-objective
functions are often defined. Previous CP studies used two
different ways to represent a multi-objective function. One way
is to use a linear combination of different objective criteria to
form a single objective function, where different objectives are
given a certain weight between O and 1 [25], [26], [27], [28],
[29].

In the second method, the problem is formulated by a
set of decision variables i.e., parameter space vector and a
set of objective vectors. When there is no solution that can
improve one objective without degrading the other objective, it
is considered as the optimal solution. This solution is referred
to the Pareto optimal solution [30], [31], [29]. The objective
functions of interest can also be assigned weights to reflect
their importance relative to each other. Such weighted multi-
objective functions give more flexibility to the network planner
by assigning higher or lower weight to put more or less
emphasis on a given objective.

C. Cell Planning Inputs

Different inputs are required to solve the cell planning
difficulty depending on objectives in focus and phase of
planning. Usually, the following inputs need to be known [32]:

1) Traffic Models: User traffic distribution is a main factor
that ultimately determines the cellular system plan and,
hence, is a key input in the CP process. In GSM (mono-
service systems), for instance, geographical characteri-
sation of traffic distribution is sufficient. However, with
multi-service systems supporting data, traffic character-
isation based on types and level of service is needed
[33]. Test point based traffic models are often used for
CP traffic modeling, for the sake of practicality [34],
[35], [36], [6]. In this model, an area is characterized
over a time interval and all located mobile terminals are
bundled into a single test point. This point represents
the cumulative traffic, or traffic intensity, from all these
terminals, over the determined interval.

2) Potential Site Locations: Theoretically, a base station
can be installed anywhere. However in the real world,
a set of candidate sites is first pre-determined and used
as input to the CP, to incorporate the real estate con-
straints. The objective, thus, is to find the optimum
subset of BS locations. These potential BS locations are
determined by taking into account the constraints such
as, socio-economic feasibility and availability of site(s),
traffic density, building heights, terrain height(s) and pre-
existence of a site(s) by the same or other operators.

3) BS Model: There are many parameters that define the
BS model such as: antenna type and height, receiver
sensitivity, load capacity, transmit power and capital
and operational costs [37] . Moreover, heterogeneous
networks necessitate modeling of new types of nodes;
for instance relay stations (RS), pico-cells, femto-cells,
and small cells.

4) Propagation Prediction Models/Maps: A key input to
the planning process is the signal propagation model.
The potential of this model is to incorporate reflection,
differentiation, absorption, and propagation of the signal
in real environment. Taking into account the natural and
man-made structures, vegetation and topography of an
area, highly determines the accuracy of the CP out-
comes [38]. Very sophisticated planning tools rely on ac-
tual measurement based propagation maps, or ray tracing
based complex analysis, to predict the propagation [39].
However, obtaining complete propagation maps of a
large area using these methods is a very cumbersome,
time consuming , and expensive process. For this reason,
different empirical models have been proposed in the
literature. Such models abstract the experimental and
statistical data in the form of deterministic expressions,
that can easily be used in the CP. Okumura [40],
Hata [41], and COST 231 [42] are a few examples
of such well known propagation models used in CP
to depict propagation loss in different environments
and scenarios. A fine tuning of these models is done
by setting parameters within these models to reflect
the real-world conditions as closely as possible. While
propagation models for sub 5 GHz frequencies are well
established, research on developing such models for
higher frequencies such as mmWaves is still in progress
[43].

D. Cell Planning Outputs

The goal of the CP process is to provide one or more of
the following outputs:

1) The optimal number of base stations;

2) The best locations to install base stations;

3) The types of base station optimal for each location;

4) The configuration of parameters such as antenna height,
number of sectors and sector orientation, tilt, power;

5) Frequency reuse pattern;

6) Capacity dimensioning, e.g. number of carriers or carrier
components per sector.

E. Types of CP and their Complexity

The objectives, input and output of the CP process also
depend on the type of planning. There are generally two types
of CP, roll out and incremental, as explained below:

1) Roll-out CP: This is the CP where no prior networks
exists and a plain state approach can be used to meet
all the objectives of interest. In terms of input parame-
ters, in this phase the traffic distribution is not exactly
known yet. Estimates of traffic based on geo-marketing
forecasts are used for planning in this phase



2) Incremental Planning: This type of CP is generally
carried out after the first roll-out planning to meet the in-
creasing demand. Unlike the plane state approach, plan-
ning in this phase is bounded by additional constraints
imposed by existing sites. However, in this phase the
traffic distribution can be modeled now with much better
accuracy using the measurements from existing network
reports [44]. It is anticipated that 5G deployment will
mostly require incremental planning by building on
LTE/UMTS/GSM network.

Both CP types correspond to the second part of Fig. 2, with
incremental planning also touching on the third part (post
deployment optimization).

F. A sample formulation of CP and complexity analysis

For CP , if the main objective is to maximize service area
fairness, maximize capacity and minimize power consumption
in the system. The objective function can be modelled for a
number of constraints. Using the notation defined in Table I,
the problem of holistically planning a cellular network can
now be formulated as multi-objective optimisation problem as
below:

ma, r,Y,Q 1
QbyQ'ererb;Sb?(Ps)P7')~7:57¢570f( ) M
subject to:
B < Bmaz
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The above formulation can help to gauge the unfathomableness
of the solution space of the CP problem. Taking a toy
example of only 56 cell cellular system and focusing on
solving for optimal tilt angle only, assuming a quantization
to ten possible values, a brute force based solution will have
to assess {ko.max + 1}(21’3:1 ) — 1056 possible solutions.
With a state of the art computer having processing speed of
10'? evaluations per second, finding an optimal solution may
require as long as Wjim%seconds, which is clearly
prohibitive. Note that the actual size of the solution space of
a typical holistic planning problem represented by (1) would
be even more gigantic as can be sketched by the expression
below:

TABLE I
SYMBOL DESCRIPTION

Symbol | Description
b bth base station
B set of all base stations in systems
B total number of BS ie. |B] = B
Bmax maximum number of BS that can be afforded.
A Total area of interest
Q set of Q bins that constitute A
g | ¢"bin T q=A4,& 5 =qYcQ
Qp set of bins in which BS are located, Qp C @
S set of all sectors in the systems
S total number of sectors in system i.e. |[S| = S
s denotes st" sector
Sy total number of sectors b** BS has
Sy Sy ={51,52,53..58}, S =S| =3B | S,
Sp,maz | maximum number of sectors a BS can have
hs (antenna) height of stP sector antenna on BS
Hs set of all sector antenna heights
hs,maz | maximum allowed hs
hs,min | minimum allowed hs
Ohy, step with which hs can vary
fs fractional frequency reuse factors in st sector
F set of fs for all sectors.
k 7 number of different values fs can have
R set of RSs in the system R ie. |R| = R
T rt" RS in the system
Rmazx maximum RSs that can be afforded
9, set of bins in which RS are located, @, C Q
Hr set of all RS antenna heights
hy height of 7' RS antenna,
Oh, step with which A, can vary
) vector of azimuth angles of all sectors
¢° azimuth angle of st sector
[ set of tilt angles of all sectors
0° tilt angle of st sector
04 00 steps sizes for azimuth and tilts change
ko max | maximum steps of tilt change
kg mae | maximum steps of azimuth change
s set of transmission powers of all sectors
Ps transmission power from stP sector
Op, step with which ps can vary
Ps,mazx maximum allowed value of pg
Ds,min minimum allowed value of ps
Pr set of transmission powers of all RS
Dr transmission power from rth RS
Op,. step with which p, can vary
Pr,max maximum allowed value of p,
DPr.min minimum allowed value of p,
Gs gain from the s?* sector antenna to g%’* bin.
« path loss co-efficient
I} pathloss exponent
v vertical beamwidth of the antenna
P3 horizontal beamwidth of st sector antenna
T capacity wise performance indicator
Q total power consumption in the system
r service area fairness wise key performance indicator (KPI)
X\y means all elements of X’ except y.
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By the preponderance of (2) it is clear that a brute force
solution is theoretically not possible in reasonable computing
time. Since there is no known polynomial time efficient algo-
rithm in the literature for this or similar problem, CP problem
has been shown to be NP-hard a number of times [45], [46],
[47], [48]. Appreciation of the complexity of cell planning
problem through this analysis should help better understand
rationale behind solution approaches taken in various works
in the literature.

G. Coping with NP-hard CP Problems in Practice

When considering the CP problems that belong to the
class of NP-hard combinatorial problems, the most common
approaches that have been used in literature can be classified
into the following:

o Easy special cases. In this approach, the problem is
not solved in its full generality. Rather properties of the
input instances are identified and exploited that make
the problem easier and mathematically tractable, and
then an algorithm is designed that makes use of these
properties. Although the advantages of this approach such
as robustness and transparency are strongly advocated in
[49], [50], it largely remains an under explored territory
in CP domain. Recent examples of use of this approach
can be found in [51], [52].

o Somewhat efficient exponential algorithms. Here an
algorithm is designed that always solves the problem with
running time not polynomial, but still much faster than
exhaustive search. This approach may be useful for inputs
of moderate size. Examples for use of this approach can
be found in [53], [26], [54].

o Approximation algorithms. In this approach the quality
of solution is sacrificed to obtain more efficient algo-
rithms. Instead of finding the optimal solution, the algo-
rithm settles for a near optimal solution with advantage
of making the problem easier. Examples of use of such
approach can be found in [55], [56], [57].

o Heuristics In this approach heuristics are used to design
algorithms that work well on many instances, though
not on all instances. This is perhaps the approach

most commonly used in practice [58] and heuristics
such as simulated annealing [15], [59], genetic algo-
rithms [47], [60], [61], [62], particle swarm [48], [63],
Taguchi’s method [64], bee colony optimisation [65],
tabu-search [66] or k-mean algorithm [67] have been
applied to obtain near optimal solutions for various CP
problems. A detailed discussion of use of evolutionary
heuristic for planning problems can be found in [61].
Hybrid approach A number of hybrid approaches that
combine analytical and heuristic techniques or combine
more than one heuristic in cascaded stages to solve the
NP-hard planning problems have also been proposed in
the literature [68]. For example, authors in [69] present
a hybrid approach consisting of three stages. In the first
stage, a good feasible solution to the problem is found
by using constraint satisfaction technique embedded with
a problem-specific search guidance. The second stage is
to apply a good local search procedure to improve this
solution. The third stage is to make a further improvement
to the solution derived from the second stage. The best
objective function value obtained from the second stage
is used as the upper bound, then a constraint optimization
technique is applied to improve the solution. Numerical
results show that optimal solutions are always obtained
for small to medium sized problems. For larger sized
problems, the final results are on average within 6 -
7 percent of the lower bounds. Such hybrid approach
can be an efficient tool for tackling a wide range of
combinatorial NP-hard problems.

III. RECAP OF THE PRIOR STUDIES ON CP

The objective of this article is not to provide a com-
prehensive survey the past of CP but characterize the
future of CP by building on insights from past and
present. Therefore, instead of providing a detailed review
of past literature on planning, in Table II, we concisely
summarize the representative research works on CP that
have been carried out in time between the dawn of 3rd
generation cellular system (UMTS) and the emergence of
a 4th generation cellular system (LTE). In addition to the
detailed classification labels given in columns of Table
II, these works can broadly be classified into

— Classic CP
— Holistic CP

The Classic CP was mainly concerned with optimising
the number and location of base stations. As we can see
in Fig. 5 , in the previous technologies there were no
new features added. With the widespread deployment of
2G and 3G cellular networks, explosive traffic demand,
and invasive data services, the classic planning could no
longer serve the objectives of CP. In order to cater to
multiple objectives, such as coverage, capacity, QoS, cost
of network and energy consumption, many parameters
needed to be considered in the CP, which motivated the
development of holistic CP.

In the Table II, we have also summarized the holistic
CP parameters whose optimization have been addressed
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and researched in CP literature. The table provides a
taxonomy of the works done in terms of BS location, fre-
quency, budget, interference, transmission power, height,
heterogeneous traffic, number of sectors, antennas, tilt
planning, traffic uncertainties, and analytical models etc.

IV. RECENT TRENDS IN PLANNING FUTURE
NETWORKS

In this section, we review the literature on recent trends
in CP that include considerations for energy efficiency,
uncertainty in traffic, and CoMP.

A. Energy Focused Planning: Green Planning

In recent years improving energy efficiency in cellular
operation has become an integral part of CP, partly to
reduce carbon footprint and partly to reduce OPEX. Fur-
thermore, as the cellular networks are becoming denser
and revenues per bit are decreasing, the need for energy
efficient cellular systems is growing more than ever. In the
following we review several mechanisms to incorporate
energy efficiency in to the CP process that have been
proposed in literature.

1) Energy Savings through optimal BS positioning:
Authors in [80] tackle the basic BS location problem and
assignment of mobile users to appropriate BSs in 3G W-
CDMA uplink environment. The authors propose a con-
straint satisfaction model and apply different techniques
like variable ordering and value ordering to find good

optimal solutions. Instead of cost minimization, the ob-
jective of their model is to minimize the total transmitted
power. Once the location and power configuration of BSs
are known, the next step is to study BS assignment to the
higher level. This involves the investigation of an access
network sub problem. It is shown that local approaches,
that aim at reducing the energy consumption of individual
network components, can be quite effective. However,
global approaches, that consider the entire network en-
ergy consumption in the network design, planning, and
management phases are a must, for a holistic approach
to energy efficient networking.

Compared to previous works on energy savings via BS
switching, in [90], [91] the authors investigate the domi-
nating factors in the energy savings. Energy consumption
of the BS amounts to nearly 850W, with the energy
needed to transmit from the antennas amounting only up
to 40W and the rest expended even in case of idle opera-
tion. Their analysis shows that the mean and variance of
traffic profile and the BS density are the dominant factors
that determine the amount of achievable energy saving.
Moreover, an expression is obtained that indicates that the
energy saving increases when the traffic, mean/variance
ratio and the number of neighboring BS have higher
value. It means, for instance, that the greatest energy
savings are likely to be realized in urban commercial
areas (since such an area is likely to show both high
traffic variance between day time and night time as well



as high BS density). It is also emphasized that, the slope
of traffic variation is more important than the maximum
value in estimating the traffic profile because the slope
directly determines the switching-on/off time.

In [92] authors investigate techniques to optimize the
number of base stations and their locations for energy
efficiency. The key contribution of this work is that
it takes into account the nonuniform user distribution.
Authors make use of a stochastic programming approach
using mixed integer programming to model and solve the
base station location problem from a BS power efficiency
perspective. It is claimed a power reduction of at least
96% is possible with the proposed solution. However, the
proposed techniques assume full knowledge of channel
state information (CSI) at BS while neglecting effect of
small scale fading and shadowing.

2) Energy Savings through BS with proportional energy
Model: In [93] authors provide an analytical estimation
of the energy savings that can be achieved for two BS
models: a) On-Off BS energy model (current BS are
more of this type) b) Proportional energy model where
energy consumed is proportional to load in the cell.
They use a QoS metric of delay, which is defined as
inverse of throughput, which is further defined as an
abstract function of distance from BS only, for analytical
tractability. With this model, they present expressions
for expected delay and variance of delay for given BS
and user densities. These expressions are then used to
analyze the BS densities and, hence, energy consumption
for a given user density and QoS constraints. They also
formally show the fact that lowest BS density for a given
user density is possible with circular cells (as circle has
largest area and thus largest number of users for a given
distance allowed form the center of shape i.e. BS). The
proof actually yields lower bound on the BS densities for
any allowed topology of BSs (grid, hexagon, Poisson).
The key inferences obtained are: 1) Poisson topology
is less energy efficient than the regular topologies due
to irregularly large distances from BS; 2) on/off model
allows much more energy savings than the proportional
model, advocating the use of system level techniques
(compared to transmission power focused physical layer
techniques that try to reduce variable energy consump-
tions on individual BSs). With proportional energy model
(i.e. futuristic and unrealistic at the moment) the optimal
energy saving model is not the one with lowest BS
density. This advocates low power large number of small
cells.

3) Energy savings by switching ON/OFF BS: In [94],
the authors present a methodology to calculate the en-
ergy savings by switching off BSs. They model energy
consumption as a linear function of the number of BSs.
Then, using the traffic profile for 24 hours, it is argued
that as the traffic decreased by a factor X, a fraction
X of the BSs can be shut down, and consequently,
energy consumption will also be reduced by a factor X.
Next, they remove the assumption that any BS can be
shut down, and suggest that, in specific topologies, only

certain BSs can be shut down to avoid coverage holes
(e.g. in hexagon, six out of seven or three out of four
BSs can be shut down). Similarly, authors identify the
number of BSs for crossroad (urban street scenario with
each cell having four neighbors) and Manhattan lay out.
Note that the paper assumes omni directional antennas
appointed in center of the cells and does not quantify the
loss of coverage, capacity or takes into account the local
user demands when shutting down BSs.

Authors in [95], [94], [93] present a scheme for energy
management of base stations according to the network
traffic that incorporates binary on/off activation or con-
tinuous cell zooming capabilities at the BSs. It is shown
that noticeable energy savings can be achieved for low
network traffic.

The authors in [96] present energy efficiency metrics
and investigate the performance of different planning
strategies of LTE networks in an empirical way. In [97],
the authors propose to incorporate the on/off switching
of BSs in the planning process itself. They first present
a heuristic to have a minimum number of BSs. In this
algorithm, first a Verona tessellation is established, then
BSs are classified in feasible and infeasible set. A feasible
set consists of BSs whose removal will not decrease the
coverage below the threshold. This step is repeated until
no BS can be removed without decreasing the coverage.
To incorporate on/off switching, first the network is
planned for the lowest traffic (this defines the infeasible
set that cannot be switched off) and then it is planned for
highest load. Turning on additional BS and finding their
locations is done by repeating the same algorithm.

In [98], the authors use a detailed energy consumption
model of the BS and definitions of site load factor to
predict how much energy will be consumed to provide
target capacity demands (100 Mbps in the paper). They
take the energy consumption and capacity of existing
HSPA+ in Finland (2008) as reference and compare it
with that of LTE while considering the gains obtained in
LTE by node level (energy/capacity) efficiency as well as
by network level deployment strategies.

4) Energy saving though cell size adaptation: In [99]
authors present an analytical framework coupled with
a simple mathematical traffic model, to investigate the
potential energy savings that can be achieved by adap-
tively adjusting the cell size according to the spatial
traffic variation. The key idea is that, instead of having
the same cell size throughout, areas with low traffic
density can have larger cells compared to areas with
high traffic density, resulting in energy and cost savings.
The cell radius is calculated such that the cell includes
maximum number of users while maintaining a threshold
blocking probability resulting from underlying M/M/N/O
queuing model of traffic and geographically varying user
density. The results show that energy savings increase
as cell density decreases until a certain point, where
the large transmission power overcomes the fixed power
consumptions, and the energy savings start to diminish,
reaching negative values. This work does not incorporate
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Fig. 3. Green planning with BS on/off switching: proactive versus reactive
approach.

impact of interference, frequency reuse and sectorization
on coverage.

In [56] the same authors present a modification of their
work in [99] again for energy savings in LTE. Here
instead of adapting the cell sizes in order to cope with
spatial traffic variation, they propose dynamically adapt-
ing the number of sectors per site (three to two sectors
per site) to cope with temporal variation of the sectors.
They argue that though adaptive sectorization has been
previously used for CDMA systems, it suffered from
two short comings: 1) QoS constraints are not taken into
consideration which makes the user terminals suffer from
high blocking probability and low coverage once some
sectors are off; 2) the transmission power of the BSs
is assumed to be adjustable in a large dynamic range
which is normally impractical in real systems because of
the power amplifier and RF link. In order to overcome
this shortcoming they suggest to increase the beam width
and change the azimuth of two remaining sectors when
the third is shut down in low traffic times. The QoS
and power constraints are satisfied while saving 21%
energy per BS using EARTHs measurement based power
consumption model of the BS. Instead of full buffer
traffic model, they use event triggered traffic model that is
based on the continuous time Markov process. However,
the results presented seem to be independent of the
underlying traffic model.

5) Energy saving through Network Infrastructure shar-
ing : In [100], the authors exploit the observation that
metropolitan areas are normally served by a few com-
peting cellular network operators, providing 24/7 full
coverage, each dimensioning its network according to
peak traffic, but providing redundant resources when
traffic is low. So provided that operators are willing to
accept the competitors subscribers as roaming customers,
some energy can be saved. For the case of just two
operators, the authors show that 20% or more energy can
be saved, though the exact saving will depend on lot of
parameters including operator policies, that remain to be
investigated.

6) Energy Savings through Proactive Approach: The pre-
viously proposed approaches for switching BSs on and
off are reactive, i.e., the network plan and BS sites are

fixed and then reactive measures are implemented to
decide which sites to switch on/off and which sites to
reconfigure as network conditions change. To increase
energy efficiency, an alternative approach would be to
perform network planning as a function of the traffic load
over large-scale time durations (hours and days) instead
of planning only based on peak hour worst case traffic
conditions. The process would then start by performing
network planning based on the low traffic load conditions;
this will give the set of BSs that need to be switched on
at all times (during both high and low load conditions).
The next step would be to perform network planning
based on the higher traffic load conditions but with the
sites obtained in the previous step fixed. The aim is
to determine how many new sites to add and where
to place them in order to support the increase in load;
these are the sites to be additionally switched on in high
load conditions. This approach, summarized in Fig. 3 is
generic enough to account for any number of traffic load
states depending on the large-scale traffic variations in
the area of interest.

A proactive approach proposing a modeling and optimi-
sation framework for the planning of energy-aware wire-
less networks is introduced in [101]. The key idea is
that energy awareness should be introduced at the plan-
ning stage in order to reach energy-efficient network
operation. The authors formulate a joint planning and
energy management problem, that aims to minimize a
utility comprising a weighted sum of CAPEX and OPEX,
including power consumption costs. By solving a binary
linear program, the authors optimize BS positions, types,
and configurations.

B. Planning with Traffic Uncertainty Considerations

Due to heavy traffic fluctuation over time cellular net-
works, operators often use peak hour traffic volume
during network planning in order to avoid capacity bot-
tlenecks [102]. A more efficient approach would be
to consider the design of cellular networks under traffic
uncertainty. For example, in [103] the authors suggest that
better radio resource usage is possible by incorporating
the time-varying traffic in the planning. They demonstrate
that the user mobility can be similarly converted to the
multi-period optimization problem. To this end, they for-
mulate a simple one dimensional cell planning problem
and demonstrate how it can be converted into a binary
linear programming problem to look for the optimal
solution. An overview of the most important techniques
dealing with traffic uncertainty is presented in [104]. The
literature that provides solutions for planning with traffic
uncertainty can be divided in two categories discussed
below.

1) Multi-Period Network Design: In multi-period (multi-
hour) network design [105], an explicit set of demand
matrices is given, and the network is designed in such
a way that each of the demand matrices can be routed
non-simultaneously within the installed capacities. In



this context, authors in [106] introduce the concept of
dominating demand matrices (i.e., D1 dominates D2 if
every link capacity vector supporting D1 also supports
D2). Instead of describing demand matrices explicitly,
the authors in [107] consider the optimized routing of
demands that may vary within a given prototype. For
network design problems, this concept has mainly been
applied using the hose model, a polyhedral demand
uncertainty set which has been introduced in the context
of virtual private networks (VPNs) [108]. More details
and a good overview about methods to deal with network
design under uncertainty are presented in [102], where
robust optimization is advocated as a possible solution.

2) Robust Optimization: Robust optimization was first
considered by Soyster [109], and it aims at finding
solutions that are feasible for all realizations of data in a
given (bounded) uncertainty set. In robust optimisation a
parameter I' is used to control the price of robustness,
the trade-off between the degree of uncertainty taken
into account and the cost of this additional feature [110].
In [111] authors apply robust optimization to deal with
demand uncertainty in cellular networks. Their robust
optimization model offers for operators a trade- off
between robustness and energy consumption by varying
the robustness parameter. The complexity of problem
is reduced by applying cutting planes. A case study
is performed to compare the robust formulation to its
deterministic counterpart and to conventional network
planning. It is observed that energy savings are possible
either by deploying less BSs or serving more users with
the same number of BSs using the proposed robust
optimization approach.

C. Planning with CoMP

In conventional CP, the BS coverage areas are controlled
to minimize coverage overlap. However, when the BSs
can coordinate to dynamically reduce interfere or bal-
ance loads, as in CoMP, standardised for LTE-Advanced
(Release 11) and beyond, signal coverage overlap can
be tolerated or even becomes desired. Thus, planning
with CoMP becomes a very different problem compared
to traditional planning discussed in previous sections,
triggering some dedicated studies in recent years.

In [112] authors investigate the impact of coordinated
multipoint (CoMP) transmission on cell planning pa-
rameters such as coverage, traffic, handover, and cost.
To assess achievable coverage and capacities with and
without CoMP, authors propose and use two ratios: Local
to-uncooperative- plus-noise ratio (LUNR) and the local
to-cooperative-ratio (LCR). Simulation results show that
CoMP maximizes its gains over noncooperation (NC) in
a network. However, NC may produce higher throughput
in certain scenarios. Therefore, to avoid low system wide
average throughput with CoMP, authors recommend a
dynamic or semi-static switching between CoMP and NC
called fractional base station cooperation. It is highlighted
that because of interference from non- cooperating BSs,
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the gains of CoMP over NC are upper bounded and
diminish at greater inter site distances due to noise. This
encourages smaller cell sizes, higher transmit powers,
and dynamic clustering of cooperative BSs. Cell planning
with CoMP may require additional steps e.g. determina-
tion of cooperative and non-cooperative regions, LCR,
and LUNR thresholds. Findings also show that gains of
CoMP remain moderate, hence the complexity and cost
incurred by CoMP should also remain moderate. The
key limitation of this work is that each BS is assumed
to be incapacitated. Therefore, user throughput solely
determines the selection of the BS cluster in dynamic
clustering, and load balancing remains an unexplored
aspect.

In [113], the authors compare the energy saving potential
of relay station (RS) and CoMP with single BS sce-
nario while maintaining an average outage constraint.
The impact of the traffic intensity and BS density are
also investigated. Results show that traffic intensity can
be divided into three classes: coverage-limited region,
energy-efficient region, and capacity-limited region. The
interesting finding is, as BS density goes higher, the
energy-efficient region becomes larger, and the traffic
load region where the cooperation schemes bring benefits
becomes smaller. Furthermore, it is observed that RSs
energy cost needs to be designed as low as possible to
get high performance, otherwise BS cooperation would be
more favorable. The analytical models developed provide
useful insights for green planning with CoMP

In [114], the authors extend their work in [113] for
BS location and number planning taking into account
CoMP, thus making the process of network planning more
energy- aware. The optimal network planning problem is
formulated as a mixed integer programming problem and
an approximate solution is proposed using Lagrangian
relaxation. Numerical results show that the overall energy
consumption is decreased by over 20% compared with
no cooperation while the system QoS is guaranteed. It
is also observed that the low network density and traffic
distribution asymmetry lead to higher energy efficiency
gain.

V. NEW MODELING TOOLS FOR PLANNING FUTURE
NETWORKS

In wake of new requirements and technologies discussed
in previous section that are a becoming vital part of the
CP paradigm, planning future networks call for corre-
sponding evolution in modelling tools. In this section,
we provide a brief overview of recent developments in
models that have been proposed in literature to cope with
new requirements in CP paradigm

A. Modeling dynamic channel variations in CP

In [115], the authors argue that conventional planning
techniques rely on static propagation and interference
models, which, although they take geographic informa-
tion into account, they overlook the dynamic channel
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variations. To bridge the gap between static and dynamic
planning the authors established a simple relationship
that relates the static SIR to its dynamic counterpart
by a factor, which represents the influence of a fading
environment. They use this new relation to study several
aspects of a cellular system that reveal the physical
implication of the static SIR in a dynamic operational
environment. They also provide a simple method for
evaluating the average outage probability. Finally, they
determine the relationship between the conflicting re-
quirements on the system capacity and on the minimum
outage performance.

B. Modeling Multi-Carrier systems in CP

In [116], the authors argue that classic interference mod-
els used in CP have been limited to single carrier systems
and present an analytical method to assess effective
SINR in multi- carrier systems operating over frequency
selective channels. This extension of single carrier is
achieved by expressing the link outage probability in
terms of the statistics of the effective SINR. Two approx-
imations for the link outage probability are obtained by
considering Log-Normal and Gaussian assumptions for
the derivation of the statistics of the exponential effective
SINR. The SINR statistics are used to further assess the
outage probability and thus obtain a simplified planning
procedure for two cells interference scenario.
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C. Modeling Cell Load in CP

In [117], the authors introduced a method to analyti-
cally approximate cell load levels while planning OFDM
networks by building on corresponding ideas in UMTS
networks, namely load scaling and continuous traffic
distributions. The idealized power control equations for
UMTS are replaced by affine linear approximations of
the adaptive modulation and coding (AMC) mechanism
for OFDM which results in a different structure of the
equations. They proposed a simple iteration for solving
the equations numerically. The approach avoids time
consuming snapshot simulations. The model is useful
for automatic network planning and optimization as fast
analytical capacity evaluation can build the foundation
for various local search algorithms for improving network
designs.

The authors in [118], extend their work in [119] and
present a mathematical analysis of fundamental proper-
ties of the load coupling among cells for LTE system.
They also develop and prove a sufficient and neces-
sary condition for the solutions existence. Theoretical
results for numerically approaching the solution or de-
livering a bounding interval are also presented. Finally,
the application of the proposed system model for plan-
ning LTE network is presented. The analysis in [118]
has been supported by theoretical proofs and numerical
experiments and can serve as a basis for developing
radio network planning and optimization strategies for
LTE. Furthermore, the presented linearization and the



bounding based optimization can potentially be used for
more general convex optimization problems with similar
properties. However, the analysis does not take into
account interference dynamics specific to the LTE. In the
SINR model of [118], interference is considered from
all cells weighted with the load in those cells only. In
other words if two interfering cells A and B are loaded
50% and 20%, the interference from these cells will be
scaled by 0.5 and 0.2 when being received by the cell
under consideration. This is more like CDMA where
interference is independent of frequency reuse. In LTE
presence of sub carrier allocation and scheduling means
both cell A and B can still be interfering as long as
weight is greater than zero depending on if that particular
sub carrier is being reused or not. Furthermore, use of
fractional frequency reuse adds another dimension to the
interference modeling in LTE that is not considered in
this paper.

D. Modelling BS location Randomness in CP

In [51], the authors argue that, although the problem of
BS placement has been addressed with standard Voronoi
partitioning, the standard Voronoi partition cannot be
used in a scenario where the BSs have heterogeneous
and anisotropic characteristics (directional antennas) or
where geographical terrain is not planar two-dimensional.
Therefore they suggest to use a generalization of the
standard Voronoi partition replacing the usual distance
measure with the concept of an abstract general function
(named node function in the paper) associated with each
site. The optimisation objective is formulated as a product
of the node function with user density, integrated over
the generalised Voronoi tessellation of each BS and then
summed over all BSs. It is concluded that the solution
will be to place each BS at the centroid of general
tessellations (for which an abstract formula is given). But
it is not clear from the paper whether the BS location or
its corresponding tessellation will be decided first.

In [120] authors address BS location problem with a sin-
gle objective of minimizing outage (evaluated by Monte
Carlo simulations). Their case study assumes HSDPA
system with pre-presence of fixed number of micro sites.
For performance evaluation they make use of a planning
tool and Monte Carlo method using real network data that
includes: 3-D geolocations of the base stations, digital
elevation map and digital clutter map data, antenna char-
acteristics (pattern, tilt, and cable losses), total transmit
power levels and spatial broadband traffic.

The proposed algorithm to address the problem, named
SMART, consists of three simple steps.Greedy, Simulated
Annealing (SA), Greedy with memory (Greedy Mem),
and Simulated Annealing with memory (SAMem). It is
shown that simulated Annealing and Greedy algorithms
achieve almost the same optimal deployment when the
number of optimization iterations is large and, the greedy
algorithm converges much faster than simulated annealing
algorithm when the number of optimization iterations is
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small. It is also shown that in practical network deploy-
ment scenario SMART outperforms previously proposed
meta heuristics such as Deployment Formula Metric
(DFM) based schemes proposed in [121] and [102].

E. Modeling Intercell Interference

In [122], intercell interference modeling is performed in
the uplink, while taking user scheduling into account.
Scenarios with round robin, proportional fair, and max-
imum SINR are considered in the presence of various
fading types. The obtained semi-analytical expressions
are used to evaluate network performance metrics such
as the outage probability, ergodic capacity, and average
fairness numerically. The derived model can be useful
as an input for radio network planning algorithms, in
order to take inter-cell interference into account with user
scheduling during the planning process

Modeling intercell interference in the presence of up-
link power control is investigated by the same authors
in [123]. Fading is also incorporated in the models,
along with basic scheduling assumptions. The expressions
derived in [123] are then utilized to quantify numerically
certain network performance metrics including average
resource fairness, average reduction in power consump-
tion, and ergodic capacity. Although the models of [122]
and [123] are derived for the uplink, indications on their
downlink extensions are described. Main limitation of
these models stems from considering a single subcarrier.
Generalization to the scenario of multiple OFDMA sub-
carriers with dynamic subcarrier allocation (as in the case
of LTE scheduling) is a daunting task.

F. Total Cost of Ownership Models

1) Net Present Value (NPV): In [124], authors use a
planning tool to compare the performance of several
algorithms, using the optimization objective of NPV. NPV
takes into account expected revenues, CAPEX and OPEX
(of BS as well as sectors) over a period of 6 years.
Optimization is done in terms of BS locations, their
numbers (out of a set of locations), and the number
of sectors per BS. These results show the Tabu search
performs well compared to other approaches though at
the expense of additional execution time

2) Cost Analysis of BS and Relay Station (RS) : In [125]
authors do a cost analysis of joint BS and RS deployment
in the context of LTE (they assume 2x2 MIMO). To this
end, they use simple linear cost model that is sum of
BS and RS densities weighted with their relative cost
factors. Then via simulations they derive the curves for
iso-capacities while varying BS and RS densities (per
square kilometer). Hence, an increase in RS or BS density
increases capacity in general, so by varying their densities
reciprocally, the same capacities can be obtained. All
such combinations of RS-BS densities that achieve same
capacity (area spectral efficiency) make an iso-capacity
curve. Then for a given iso-curve the point where the
linear cost model defined earlier, is tangent to it, yields
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the least cost deployment for achieving that capacity. For
this kind of static deployment, the optimal number of RSs
is reported between 7 and 11. As after certain RS density,
further increase in RS density can decrease the capacity

(the same capacity cannot be maintained), therefore, iso-
capacity curves also provide and upper bound on the RS
density. Authors also analyze the impact of back haul
distance on capacity-cost trade off of RS. They evaluate
cost efficiency against number of RS per cell for various
backhaul distances. Cost efficiency function proposed in
[126] is used for this objective that is proportional to
spectral efficiency (that is indirectly function of distance)
and inversely proportional to the RS costs. The authors
further investigate the impact of progressive deployment
of RS. That is, unlike previous case where all RS are as-
sumed to be deployed at once, authors assume RS might
be deployed gradually e.g., one each year. To evaluate
this scenario authors, use measure called ACSI (Average
Customer Satisfaction Index, a term from economy), that
quantifies user satisfaction after an upgrade relative to
previous network construction. Results suggest that in
terms of user satisfaction four relays are optimal.

In [127], the authors carry out cost/revenue analysis of
WiMAX in presence of relays where revenue generated is
modeled as function of capacity produced. They analyse
the impact of location of RS, frequency reuse topologies
and number of sectors on the cost/revenue optimization
results show that trisector-ed BSs in topologies with
relays enable the operators to achieve more profitable
reuse configurations than with omnidirectional BSs and
no relays. In [125], the authors investigate the possible
energy gains of evolving a mobile network through a

joint pico deployment and macro upgrade solution over
a period of eight years. Besides the network energy
consumption, energy efficiency in Mbps/kW is also an-
alyzed. Outcomes of cost analysis in terms of total cost
of ownership are shown for different deployment options
considered. Using previous year of the evolution analysis,
it is shown that deploying more pico sites reduces the
energy consumption of the network, by a maximum of
30 percent. With regards to the energy efficiency, high
deployment of pico sites allowed the network to carry 16
percent more traffic for the same amount of energy. This,
however, results in an increase in operational costs.

VI. KEY CHALLENGES IN PLANING EMERGING
HETEROGENEOUS AND ULTRA DENSE NETWORKS

In addition to the challenges and constraints already
identified in section II and III in the context of classic
and holistic cellular planning, modern day CP faces new
challenges that stem from heterogeneity of the network,
or more specifically advent of small cells. In this section,
we discuss the challenges that are acting as Achilles heel
for small cells and HetNets planning.

A. UL and DL symmetry

A peculiar feature of HetNets CP is pronounced uplink
downlink asymmetry [128] that is generally neglected in
most academic research studies on HetNets. Although
this asymmetry exists in microcells only networks as
well, the difference between uplink and downlink is
potentially much larger in a HetNets. The reason for
this pronounced asymmetry in HetNets is as follows:



In the downlink, transmit power disparities of 20dB+
exist between macrocells and small cells while this is not
true for the uplink case wherein all transmitting UEs are
roughly equal in terms of transmission power. In other
words, in uplink direction, a small cell and a macro-
cell appear to be same for transmitting UE. Therefore,
from UEs perspective, for the downlink, macrocells have
very large coverage areas as compared to small cells
while in uplink, coverage areas are roughly equal. As
a result, cell association based on maximum received
signal strength (Max-RSS) strategy may yield different
optimal cells for uplink and downlink e.g., UEs that are
connected to macrocell due to better downlink reception
would likely be better off by associating with near-by
small cells in the uplink. Not allowing this asymmetric
association might lead to sub-optimal performance. On
the other hand, allowing independent traffic sources in
each direction raises new challenges for the core network
and also for the UEs QoS e.g., cell edge UE may have
poor SINR in one direction but not in the other. This
different cell association in uplink/downlink will result in
different interference models and resulting SINRs in the
two links e.g., UEs sharing same BS will be orthogonal
to one another on the downlink while they may interfere
with each other on the uplink if they are transmitting
to different base stations. This calls for new two-way
channel models to be investigated and incorporated in the
CP as the channel gains and SINR in the two directions
may be almost uncorrelated especially if they are routed
from different base stations.

B. Backhaul

Ultra-dense deployment of small cells will create addi-
tional challenges for the transport of backhaul traffic. Cur-
rent [129] research studies on HetNets utilize small num-
ber of small cells to improve SINR of wireless links in
limited hotspot areas wherein a relatively small backhaul
traffic originating from small cells can be forwarded into
the core network through conventional backhaul links of
cellular networks. These studies [129] focus on gains of
the wireless front haul and neglect any possible backhaul
bottlenecks. This assumption is generally correct for well-
planned conventional macrocell only cellular networks.
But this assumption breaks down for HetNets where small
cells are ultra-densely deployed, as in such deployments it
may become a key problem to forward massive traffic into
the core network through existing backhauls. It is now
believed that the full benefits of dense HetNets can be
realized only if they are supported by the careful backhaul
planning [130].

Femtocells deployed in homes by the subscribers gen-
erally utilize digital subscriber line (DSL) broadband
connection for the backhaul that can quickly become
bottleneck particularly in the Uplink [128]. IP traffic
through traditional internet service providers (ISPs) is
used to connect the femtocells with the core network.
This demands high QoS requirements from broadband
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connections. Several things need to be considered like
whether the broadband support QoS or traffic prioritiza-
tion or is the connection throttled or traffic-shaped by
ISP. The probable high latency in broadband backhaul
can pose serious problems in coordination of resource
allocation or handoffs information with other cells. Uti-
lizing untrusted IP network for backhaul poses serious
security issues as well. Macrocells enjoy commercial
grade security which is absent in small cells as they are in
direct reach of the subscribers. As a result, small cells and
public IP networks can be utilized to launch distributed
attack on cellular network. Security planning challenges
become another challenge for these unplanned networks.

C. CP for HetNets with Energy Efficiency Constraints

Energy Efficiency (EE) is emerging as one of the main
challenges in rolling out HetNets. In this section we
describe what makes EE a key constraint to be considered
while planning HetNet deployments.

1) Planning for EE from Network perspective: First
factor that makes EE more significant in HetNet planning
compared to old macro cell only network planning is
the sheer increase in number of cells. A large portion
of the energy dissipated in a cellular system is actually
consumed at the base stations (BSs) [131]. Although the
small cells have a relatively lower power consumption
profile, ultra-dense deployment can lead to high aggre-
gated energy consumption. From EE perspective, small
cells are beneficial only when they are deployed in ideal
locations where data requirements are high or macro
cell performance is low [132]. On the contrary, small
cells in control of subscribers like femtocells may not be
beneficial in terms of aggregate EE as these small cells
are operational at all times of the day. Even in the absence
of users in their coverage, a substantial amount of circuit
energy is drawn by these nodes. Therefore, switching
certain base stations off in light traffic conditions, is an
efficient technique to save energy in wireless networks
[131]. However, to implement such technique CP has to
be carried out in way that switching off those certain
cells does not create coverage holes. Another alternative
is to put certain base stations into the sleep (dormant)
mode. However, such dormant cells need to be preemp-
tively activated when user devices are moving into their
coverage and new capacity is needed. For this to happen,
the network must be able to wake the dormant small
cell before handing over traffic to the dormant cell. This
requires CP such that all sleep enabled cells have some
sort of fast signaling connectivity with neighboring cells
either on front haul or back haul.

One simpler approach is shutting down almost all the
modules of a small cell based on a fixed timer configured
based on statistical traffic cycle [132]. However, imple-
mentation of such scheme requires carrying out what
is called multi-modal CP which in addition to spatial
variation in traffic has to consider temporal variation
in traffic. This kind of CP is even more challenging



and has yet to be investigated. Another newly conceived
constraint related to EE is CP where cell sites rely on
renewable energy source. In this type of planning in
addition to spatio temporal variation of traffic, spatio
temporal availability of the renewable energy source has
to be taken into account in the CP optimization problem
[133].

2) Planning for EE from UE Perspective: From UEs
perspective, energy consumption becomes an issue in
ultra-dense deployment especially if small cells utilize
separate frequency bands/RAT. UEs must periodically
scan for nearby small cells for traffic offloading oppor-
tunity that can result in significant energy consumption
for the UE. Therefore, energy efficient discovery of small
cells becomes a problem in carrier frequency separated
deployment and a balanced inter-frequency small cell
discovery (ISCD) interval needs to be optimized. On one
hand, low ISCD periodicity (i.e. high scanning frequency)
can result in increased small cell offloading opportunity,
thus enhancing the capacity and coverage. However, this
can also lead to higher UE power consumption due to
the high scanning frequency and lower transmit power of
small cells. On the other hand, high ISCD periodicity (i.e.
low scanning frequency) can lead to the UE missing small
cell off-loading opportunity, thus resulting in a potential
decrease in capacity.

In a recent study on ISCD [134], it has been shown that
for given cell density and UE mobility there exists an
optimal ISCD frequency in terms of EE. As UE battery
life is already a bottle neck in era of smart phones, this
finding needs to be incorporated in CP for HetNets to
determine optimal cell densities, not only from capacity
perspective but EE perspective.

CP for emerging HetNets, need to take all of the afore-
mentioned EE constraints into account, which make it
a drastically different problem compared to the ones
studied extensively in literature for macro cell planning
with focus on coverage and capacity only.

D. CP with Deployment location Constraints in HetNets

1) BS placement Optimization in HetNets: Planning of
small cells was investigated in [135] assuming macrocell
locations are fixed. In [59], the BS placement opti-
mization was performed jointly for macrocell and small
cell BSs in a non uniform user density scenario. A
heuristic approach based on simulated annealing was
adopted, taking into account intercell interference, dy-
namic resource management, and joint uplink/downlink
performance. The authors demonstrate the efficiency of
HetNet planning in a hotspot scenario, shown in Fig. 7,
simulated using a Gaussian user distribution assuming
four macrocell BSs and 64 small cell BSs. In fact, the
simulated annealing approach move the small cells from
their rectangular grid positions to a Gaussian deployment,
following that of the user distribution. Such hotspot areas
are characterised with temporary traffic surges, such as
football stadiums, where the user density is very high
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around a football match and very low otherwise. For this
reason, the HetNet deployment scenario is convenient,
since small cells can be switched on and off according
to the varying traffic.

2) Sensitivity to small cell deployment location in Het-
Nets: While planning, conventional cellular networks
consisting only the macro cells, even if the macro cells
are not deployed at the ideal location but somewhat
near the optimal location, the larger radius of the macro
cell, and the ability to tweak antenna tilts and azimuths
compensates the difference between optimal and the
actual location. This tolerance for difference between
actual and optimal location in case of small cells de-
creases due to their small coverage areas and relatively
inflexible antennas. As a result, contrary to popular belief,
physical location of the small cell requires more precise
engineering than macro cells. A slight difference between
the optimal and actual location of small cell due to the
physical limitations or real estate constraints can actually
degrade network performance as small cell location can
have large impact on interference pattern and mobility
related performance. Therefore, it becomes imperative to
make optimal decisions in HetNet planning for small cell
locations to achieve efficient performance of the network.
3) CP with RS Positioning Considerations in HetNets:
Most studies that investigate RS based deployments of
HetNets generally assume RS locations to be prefixed
by some arbitrary criterion. On the contrary to harness
the full advantage of RS its location is expected to
be more impromptu than BS and hence the impact of
location of RS on the performance of the system has to be
investigated. In [136], the authors address this challenge
by building on previous work in [137] and present an ana-
Iytical study of RS positioning. The impact of RS location
selection and cell selection on the system performance
are evaluated in a single interferer scenario. Closed-form
expressions for the link SIR, link rate, and end-to-end
user rate distributions are obtained. Similarly, in [138]
authors have highlighted that existing theoretical analysis
on RS performance assessment has primarily focused on
Gaussian relay channels, and the analysis of interference-
limited relay deployment has been confined to simulation
based approaches. In their paper, they take the initiative to
provide analytical closed form expression to asses system
capacity as function of the optimal location and number
of relays, and resource sharing between relay and base-
stations. The paper shows that the optimal deployment
parameters are pre-dominantly a function of the saturation
capacity, path loss exponent and transmit powers.

E. CP with Off-loading Considerations in HetNets

In [135], the authors attempt to optimally plan small
cell locations for offloading traffic from macro to small
cells in a HetNet LTE cellular network. The challenge is
complicated further by interference coupling between cell
loads in a non- linear manner. A search algorithm leading
to near-optimal solutions is proposed. Its objective is



to select, from a set of candidate locations, up to a
given number of small cell sites in a deployed macro
cell network. In addition, an approach for numerically
constructing a tight linear approximation is proposed, in
order to enable the use of mixed integer linear program-
ming to gauge optimality.

F. Planning with Multi-RAT

Beyond these early pioneering works on HetNets plan-
ning discussed in previous subsections, detailed network
planning in the presence of HetNets still needs a more
thorough and detailed investigation. Other more complex
scenarios, such as planning a network in the presence of
femtocells [139], that can be considered as small cells de-
ployed without operator control, make the problem more
challenging. Another relevant scenario is the planning
with multiple radio access technologies (RAT), where
other technologies, such as WiFi, can be used to offload
cellular traffic. This multi-RAT operation can be uncon-
trolled, similar to the case of femtocell deployments, or
operator-controlled, where the mobile operators deploy
WiFi access points to offload part of the cellular traffic.

VII. CHALLENGES AND OPPORTUNITIES IN
PLANNING FUTURE CELLULAR NETWORKS: WHAT IT
WILL TAKE TO PLAN 5G NETWORK?

In the wake of 5G, CP is faced with numerous challenges,
some evolving from 4G such as HetNets, carrier ag-
gregation, inter-cell interference coordination and CoMP,
others that are characteristic of 5G, such as the C-
RAN, D2D, M2M communication, mmWave and Mas-
sive MIMO based deployments. Fig. 6 shows a typical 5G
deployment consisting of a macro-cell, under-laid with a
heterogeneous mix of small cells including: micro-cells,
pico-cells, RS, remote radio heads (RRH), femtocells,
CDSA, D-MUD and D2D. In this section, we discuss
how the adaptation of these new technologies in 5G and
beyond may affect the CP paradigm

A. Planning with Cloud-RAN (C-RAN)

Dense deployment of small cells requires centralised
coordination to avoid inter-cell interference and provide
intelligent resource allocation in response to spatio tem-
porally varying traffic. The Cloud or Centralised RAN
architecture, is thus considered a prime enabler to ultra-
dense networks as it allows the required coordination.
Basically, the C-RAN consists of breaking of the tra-
ditional eNB functions and migrating them towards the
centralised processor. As shown in Fig. 6, the centralised
node holds the base band functions, and is called the base
band unit (BBU). The BBU is then connected to a many
low complexity access point, which often only consist of
radio and analog/digital functions, called the remote radio
head (RRH). Hence, from a radio point of view, the C-
RAN has solved the radio access bottleneck in a flexible,
scalable and adaptive manner due to the ease of resource
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allocation among RRHs and addition or relocation of
RRHs. Moreover, owing to their low complexity, RRHs
are low cost, robust, and small in size, thus, result in the
reduction of the CAPEX of deployment and the OPEX
of maintenance and premises rent. Nonetheless, a new
bottleneck is born with the C-RAN; that is the link
connecting the RRH to the BBU, referred to as fronthaul.
The emerging C-RAN presents a categoric shift in both
coverage and capacity planning, while extending the CP
targets to the front haul. Coverage planning becomes cell-
less, since adaptive and variable sets of RRHs would now
form virtual cells, replacing the traditional base stations.
Capacity planning also evolves from being cell-centric
to BBU-centric or User centric, consequently, improving
resource usage efficiency. As for the front haul, it has
henceforth become an integral part of the virtual C-RAN
cell, hence, the corresponding CP approach.

1) CP with Radio Gain and Front-haul cost constraints in
C-RAN: Authors in [140] look at the trade-off between
the radio gains and front haul cost for different levels
of function migration, otherwise referred to as functional
split. Essentially, the C-RAN CP requires joint planning
of the radio sites and the front-haul, as in [141], which
looks at finding the RRH locations with a passive optical
fiber network (PON) for the fronthaul. The topic of
the paper is, thus, the infrastructure deployment and
layout planning problem under the C-RAN architecture.
It is formulated as a generic integer linear programming
(ILP) model which aims at minimising the deployment
cost, by identifying the locations of RRHs and optical
wavelength division multiplexers (WDM) and their cor-
responding association relations, with the constraint of
satisfying the coverage requirement. The optimisation
framework proves to be solvable and scalable as validated
through various case studies. Moreover, the results show
significant gains, when CoMP is used in the C-RAN
architecture, in terms of higher capacity and reliability
at lower cost.

2) CP with Joint Resource Management constraints in
C-RAN: Authors in [142] look a novel framework for
joint resource management in a HetNet with multi-RAT
and C-RAN. The framework consists of categorizing
various functionalities of the radio access and the fron-
thaul (PON-based) depending on the time requirement
to conduct the management actions. Self-organization
and cognitive capabilities are also incorporated in the
framework, which could be applied to various phases of
the network’s life such as planning, deployment, opti-
mization, etc

Authors in [143] also analyze the system capacity in
a C-RAN architecture, comparing two different CoMP
options with factional frequency reuse (FFR). A multiple
input single output (single user) scenario is generated
using joint transmission, and MIMO scenario (two users)
is created with beamforming, both assuming two RRHs.
The authors demonstrate an extra 6dB downlink capacity
gain with coordinated beamforming, however, at the ex-
pense of additional computational power for user pairing
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3) CP with User-Centric Cells in C-RAN: Authors in
[144] revamp the common understanding of cellular
structure by proposing a user-centric virtual cell, formed
by the user at its center and a cluster of RRH around it.
Tight cooperation between these cells is possible, allow-
ing efficient power allocation. The system interference is
first modeled based on the mean and variance, then the
results are applied to find the optimum cell radius that
would maximize the downlink system capacity.

B. Planning in the Presence of M2M and IoT

The introduction of smart cities and the Internet of
Things (IoT) in which homes, smart vehicles, sensing
systems, and mundane objects are endowed with high-
speed machine-to-machine (M2M) communication capa-
bilities is seen as the major technological challenge for
the next decade [145]. While traditional M2M commu-
nications has relied on short-range technologies such as
Bluetooth or ZigBee, moving toward large-scale M2M
smart cities requires broader interconnection and com-
munications among machine type devices which is made
possible by enabling M2M communications over the
reliable cellular network infrastructure [146]. However,
realizing this vision is contingent upon transforming the
cellular infrastructure into a scalable and efficient system
capable of sustaining the diverse challenges of M2M
communications [145], [146], [147].
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5G networks are envisioned to be multi-layered and multi-RAT consisting of macrocells, micro-cells, pico-cells, and relays, with device to device
communication, mmWave, massive MIMO and cloud-RAN

Consequently, novel cellular planning approaches are re-
quired for networks with M2M services. According to
the authors knowledge, the most of recent work on CP
does not account for M2M/IoT deployments. M2M/IoT
service service characteristics are typically different from
traditional human-to-human (H2H) services; M2M/IoT
services are distinguished in most applications by low
cost, low mobility, delay tolerance (except urgent security
and health cases), large number of devices (e.g., up
to 30,000 smart meters per cell), generally small and
infrequent data transmission, as defined in [148]. These
variations raise pertinent questions about cellular net-
work planning with M2M/IoT services, and pose diverse
challenges in accommodating both M2M/IoT and human
to human (H2H) traffic classes fairly and efficiently. A
recent study item by 3GPP [149] gives an insight on
M2M/IoT device characteristics that are relevant to net-
work planning, such as: single receive antenna, reduced
transmit power, reduced peak data rate of up to 1 Mbps,
device noise figure of 9 dB, etc. In addition to the device
characteristic constraints, M2M/IoT mobility behaviors
and quality of service requirements vary greatly per
M2M/IoT application. M2M/IoT over cellular networks
allows to cost effectively and efficiently connect heteroge-
neous M2M/IoT devices such as vehicles, smart meters,
sensors, and surveillance apparatus, among others. How-
ever, reaping the benefits of M2M/IoT deployment over
cellular requires overcoming major technical challenges
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Fig. 7. BS deployment (HetNet: 4 macro BSs and 64 small cell BSs) for a Gaussian user distribution over 25 km? with a density of 40 users/km?. Upper left:
Initial deployment. Upper right: Optimized deployment (Simulated Annealing). Lower left: Superposition of the two deployments. Lower right: deployments
with the distribution of user terminals in the network (black ‘x”s).

in CP while taking into account architectural, operational,
and economic perspectives [145], [150], [151], [152].

1) Architecture level challenges: At the architectural
level, M2M communications over cellular systems will
significantly increase the heterogeneity of the wireless
landscape in terms of device types and traffic classes.
Modeling, analyzing, and managing such heterogeneous
M2M systems and incorporating those models in CP thus
becomes essential [153]. On the one hand, planning of
new nodes, such as M2M traffic aggregators or road side
units must be deployed and integrated into the CP which
traditionally has been focused on BS planning. On the
other hand, expanding the network via new base stations
or optimized frequency planning must now account for
scattered, large-scale, and diverse M2M traffic, that must
seamlessly co-exist with conventional cellular services.

2) Operational challenges: From an operational point of
view, the introduction of M2M will dramatically increase
the amount of data circulating in the cellular network.
This data explosion will naturally strain the already
resource-constrained infrastructure, thus introducing ma-
jor challenges for resource management and optimization
[145], [150], [151], [152], [148] that include: 1) manag-
ing constrained resources (power, time, frequency) for
large data volumes, 2) handling excessive M2M-service
dependent signaling that modern-day cellular systems are
not designed to sustain, 3) meeting heterogeneous QoS
constraints of diverse M2M services with little disrup-

tion to legacy H2H communications, 4) handling the
high-speed mobility and dynamics incurred by vehicular
M2M traffic, and 5) maintaining a self-organizing and
cost-effective operation in a dense and heterogeneous
network environment. In addition to these constraints,
planning of an M2M enabling cellular network will also
require consideration of features such as data aggregation
for sensor-based M2M traffic, direct vehicle-to-vehicle
communications, and coordinated communication for dis-
tributed M2M services.

3) Economics and business challenges: At the economic
level, CP for M2M services requires new business models
that allow to seize the various opportunities brought
forward by M2M communications [153], [154]. One key
issue is to develop market models for inclusion in CP to
analyze the interactions between several key players in
the M2M domain that include mobile operators, M2M
providers, and possibly governmental agencies [154]. In
addition, pricing will constitute an important factor in
CP for M2M. There is a need to develop and incorporate
models for pricing mechanisms for M2M services. The
key challenge here is that, pricing is largely intertwined
with both network planning and resource management,
as it is a key determinant of how and which cellular
resources are being used by the different M2M providers.



C. CP in the Presence of D2D

Device-to-device (D2D) communications have been re-
ceiving significant research attention recently, due to their
planned incorporation in Release 12 of LTE-Advanced
(LTE-A). D2D communications in LTE-A would allow
a device to use the cellular spectrum in order to be
connected directly to another device. Consequently, a
transfer of large data amounts (e.g. multimedia) can occur
through a direct connection over short distances. This
short range (SR) D2D transfer permits to offload some
traffic from the cellular network, since it does not need
to use the network itself. D2D communications can take
place in one of three following modes:

1) D2D terminals can use dedicated resources assigned
to them by the cellular network.
2) They can reuse the same resources of the cellular
network.
3) They can form an underlay network [155], [156],
[157].
In the following we discuss the CP challenges, introduction of
D2D puts forth.

1) Fairness and Interference minimization: In an underlay
scenario the main challenge with D2D communication is to
keep the interference with the primary cellular network at tol-
erable levels. In [155], a one-to-one reuse problem is adopted,
where each D2D connection has to reuse a channel used by a
cellular connection. The solution minimizing the interference
is obtained using the Hungarian Algorithm. A joint scheduling
and resource allocation scheme is proposed in [156] for a
similar underlay scenario. The authors of [156] investigate a
tradeoff between system throughput and user fairness through
the definition of a fairness coefficient. In [157], the interfer-
ence between the D2D network and the cellular network is
controlled by keeping a minimum distance between a cellular
transmitter and D2D receiver. Round Robin scheduling is used
to ensure fairness. However, in the approach of [157], an extra
overhead is incurred since devices need to report their location
information to the BS.

2) Spatial Reuse: : Maximizing the spatial reuse while us-
ing D2D communications on dedicated or same channel is
something that has to be considered in CP. From network
perspective, small cells offer more aggressive spatial reuse.
But with D2D in picture problem becomes twisted by the
fact that small cells are more vulnerable to D2D interference
due to close proximity to device and low power, compared
to macro cells. Therefore, D2D considerate CP for HetNets
is challenging problem which remains to be investigated. For
pure macro cell based networks reuse maximization problem
is relatively more tractable. For example, a D2D resource
allocation scheme for maximizing spatial reuse is proposed
in [158], where the BS allocates D2D channels in a relatively
slow time scale whereas the mobile terminals (MTs) involved
in a direct D2D link can adjust the modulation and coding
scheme (MCS) level in a relatively fast time scale.

3) CP with D2D and M2M Interplay Considerations:
Network planning with D2D considerations alone is an open
problem. This problem is further aggravated by the fact that
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M2M and D2D can have opposing effects on the network
operation: M2M adds additional traffic to be supported by the
cellular network, whereas D2D communications could offload
some traffic from the cellular BSs. Thus, the network planning
process needs also to take into account the interplay between
D2D and M2M when they coexist in future cellular networks.

D. CP with Control Data Separation Architecture (CDSA)

An undesired byproduct of inevitable densification of future
network is that there will be a huge signaling overload
specifically during scenarios such as mobility and handover,
if conventional signaling procedures are used. As investigated
recently [159], a better way to plan for next generation 5G
networks is to leverage CDSA. The main idea of the CDSA
originates from the fact that only a small amount of signaling
is required to enable ubiquitous coverage [160]. On the other
hand, data transmission and its related signaling are needed
on demand only when there are active user equipment (UE).
This calls for a two-layer RAN architecture with a logical
separation between:

o Network access and data transmission functionalities.
o Idle mode and active mode

¢ Cell-specific/broadcast-type and UE-specific/unicast-type
signaling.

In CDSA, a continuous and reliable coverage layer will be
provided by control base station (CBS) at low frequency
bands, where the large footprint ensures robust connectivity
and mobility. The data plane (DP) is supported by flexible,
adaptive, high capacity and energy efficient data base stations
(DBSs) that provide data transmission along with the nec-
essary signaling. As shown conceptually in Fig. 6, all UEs
are anchored to the CBS, while active UEs are associated
with both the CBS and the DBS in a dual connection mode
[161]. CDSA offers a range of benefits such as better energy
efficiency and system capacity and resource efficient support
for mobility as well as M2M/IoT. However, the concept of
CDSA is still in early stages and specifying functionalities
of each plane is not trivial and is an open research problem.
Examples of recent work that investigate this problem include
[162][159].

Expectedly, CDSA will have a major impact on the way
cellular systems are planned. Specifically, it will expand the
dimensions of the solution space of the CP by requiring
planning of two different nodes DBS and CBS. Additionally,
the distinct requirements of coverage and capacity of both
DBS and CBS, delay between DBS and CBS, proximity
between DBS and CBS, will impose new constraints on DBS
and CBS location, power, coverage and capacity planning.

E. CP with mmWave based cells

Promise of mmWave stems from two factors: 1) abundance
of spectrum, 2) noise limited operation regime thanks to high
propagation loss and thus short range which opens the doors
for even denser deployment. However, the very same blessing
associated with mmWave, i.e., a short range, is also a curse.
Unlike sub 5GHz deployments where densification is a choice,



and level of densification can be tailored to meet capacity
demands as coverage is not a major constraint due to low
propagation losses, mmWave based deployments have to be
extremely dense to provide a barely acceptable level of contin-
uous coverage. Several recent studies show [43] a maximum
range of 100-200m, in line of sight (LoS) conditions. This
means if mmWaves based small cells are adapted in future
networks they will have to be adapted as complimentary source
of capacity, while primary source of coverage has to be a
high frequency (HF) based deployment of macro and small
cells. One possibility to do so, as recently proposed in [159]
is to exploit CDSA such that mmWave is used for DBS and
HF spectrum is used for CBS. This immediately makes the
pandora of CP challenges discussed in context of HetNets
as well as CDSA relevant to mmWave based CP. Additional
new challenge will be incorporation of the fact that mmWave
requires LoS, and mmWave based cells might offer highly
directive antennas. This may require planning of DBS with
the consideration of cell less deployment where coverage will
follow users in the form of narrowly focused beams, as such
no fixed cell foot prints will exist. This will require a major
shift from traditional CP, where cell foot print and their ability
to cover the whole area of interest plays the pivotal role in CP
problem formulations and solution search.

F. CP with Massive MIMO based cells

The major challenge in planning massive MIMO enabled
base stations stems from the fact that the large antenna array
gain complicates the max-RSS based cell association problem
further in HetNets. As per [35], even when macro BS reduces
its power to same level as that of small cell, the user has a
higher probability to still get connected to the macro due to
a large gain of massive MIMO macrocell. As a result, this
gain can force the massive MIMO macrocell to carry most
of the data traffic in HetNets, resulting in a significant load
imbalance between the macrocells and small cell. The second
main challenge in CP with massive MIMO is accommodation
of two conflicting objectives:

Two Conflicting Objective in CP with Massive MIMO:

There are two opposing forces at work, while deploying
massive MIMO in HetNets. Massive MIMO lends its gain
from channel diversity. However, in ultra-dense small cell
deployment, small cells owing to their small coverage area
may result in large spatial correlation of the channels limiting
degrees of freedom available to Massive MIMO thereby un-
dermining their gain. As networks becomes denser the number
of active users per cell will decrease and the need for massive
MIMO may decrease. Other factors such as cost, energy
and backhaul need to be taken into account for association/
offloading decisions.

Therefore, planning of future networks have to strike a
balance that might exist in the two extremes of all macro
cells with massive MIMO, and HetNets with massive MIMO
only on cells with size above a certain threshold. Investigation
of this optimal cell size while taking into account the user
density, number of antennas per site, channel types and TCO
is a research problem that demands extensive study.
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VIII. CONCLUSIONS

A plethora of new technologies need to be incorporated in
future cellular networks to meet unprecedented traffic demands
and to provide newly conceived services such as IoT/M2M.
These technologies include HetNets, CoMP, D2D, CDSA,
mmWave and massive MIMO. The adaptation of these tech-
nologies means that one of the oldest but still not fully matured
research area in cellular networks, i.e. cell planning needs a
major paradigm shift. This article serves as comprehensive
reference to kick start the research in CP for 5G networks for
both academic and industry based researchers.

To this end, in this article we provided timely analysis of
this paradigm shift needed in CP. We start with a tutorial of
CP to identify the input and outputs of typical CP problem and
to characterize its computational complexity. We then provide
concise recap of past attempts on different variants of classic
CP problem. This is followed by a analysis of recent devel-
opments in CP to incorporate e.g., EE, traffic uncertainties and
CoMP. We then provide an overview of recent advancements
made in modelling tools to make CP problem more tractable
and/or realistic. We then provide a comprehensive analysis of
challenges that cellular industry still faces in planning HetNets,
along with promising approaches to address these challenges.
We conclude this article with a detailed discussion challenges
and research opportunities in CP for 5G and beyond that stem
from introduction of IoT/M2M, D2D, CDSA, mmWave and
massive MIMO.
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