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Abstract—It is well known that current reactive network
management would be unable to support the exponential
increase in complexity and rapidity of change in future
cellular networks. Keeping this in perspective, the goal
of this paper is to investigate applicability of machine
learning and predictive models to assess cell-level user
quality of experience (QoE) in real-time. For this purpose,
we leverage a 5-week LTE metrics data collected at cell
level granularity for a national LTE network operator.
Domain knowledge is applied to assess user QoE with
network key performance indicators (KPIs), namely sched-
uled user throughput, inter-frequency handover success
rate and intra-frequency handover success rate. Results
indicate that applying boosted trees model on a subset
of carefully selected non-collinear features allows high
accuracy threshold-based estimation of user throughput
and inter-frequency handover success rate. We also exploit
the periodic nature of cell data characteristics and apply
a recently developed time series prediction model known
as PROPHET for future QoE estimation. By employing
machine learning and data analytics on network data
within an end-to-end framework, network operators can
proactively identify low performance cell sites along with
the influential factors that impact the cell performance.
Based on the root cause analysis, appropriate corrective
measures may then be taken for low performance cell sites.

Index Terms—Machine learning, user quality-of-
experience, PROPHET model, gradient boosted trees,
mobile network data

I. INTRODUCTION

As we approach the era of 5th generation wireless
networks (5G), network operators are striving ever so
hard to cope up with the exponentially growing data de-
mands and diversity of devices connected to the network.
Ensuring adequate user quality of experience (QoE) in
ultra-dense 5G networks becomes ever so important
for multiple reasons, for instance, reducing customer
churn as well as supporting advance 5G AR (Augmented
reality) / VR (Virtual Reality) use cases. Existing user
QoE assessment techniques are rendered impractical in
these scenarios due to their passive operation. Whether
the assessment is done via mobile applications, probe
measurements or MDT (Minimization of Drive Test)
reports, there is an inherent delay in these methodologies
which causes any remedial action to be sluggish. Since
the network states in dense networks changes instantly,

real-time evaluation of the user QoE is essential to enable
proactive network management.

In this paper, we apply well established machine learn-
ing (ML) methodologies to investigate real-time user
QoE measurement via cell level surrogate key perfor-
mance indicators (KPIs). We employ real-time counters
and metrics measured at different network elements of
a country wide LTE operator. The data was collected
over a total duration of 10 weeks with a time granularity
of 1 hour. From the cell level performance data, we
shortlist three user QoE assessment KPIs: i) downlink
user throughput, ii) handover (HO) success percentage
due to mobility from one cell to another, and iii) hand
over success rate from one radio frequency (RF) band to
another within the same cell. While the selected KPIs do
not necessarily express the QoE at user level, they are
suitable indicators for the average perceived QoE for an
arbitrary user within a cell’s coverage area. The three-
fold goal of this work is summarized as follows:

o We validate our hypothesis that user QoE can be
accurately estimated by using limited set of real-
time LTE network metrics. By applying off-the-
shelf regression and classification models, we inves-
tigate the performance of the algorithms in terms of
their ability to accurately predict from a set of LTE
counters whether a cell’s performance in terms of
three QoE KPIs is below the stated threshold.

o After establishing that real-time QoE performance
level of a cell can be accurately estimated, we apply
a recently developed time series based predictive
model known as PROPHET on the LTE data to
predict future cell level QoE performance. The QoE
performance prediction is performed for near-future
and further-future scenarios, to assess how well the
model can capture the hourly variation for the next
48 hours in case of former, and capture the weekly
trend in user QoE KPI for the latter scenario.

o From the correlation and feature importance anal-
ysis, we identify multi-collinearity amongst se-
lected metrics. By training our ML models on non-
collinear features, we obtain the relative influence
of metrics on the user QoE KPIs. Consequently, the
network operator can improve the overall user QoE



by applying remedial actions to address the highly

influential network metrics.
The rest of the paper is organized as follows. In section
II, we present a detailed background of the use of ML
techniques on mobile network generated data. Section III
introduces the operator data and some exploratory anal-
ysis. We present a user QoE assessment methodology
and framework for predictive user QoE improvement in
LTE and future networks in section IV. In section V,
we evaluate the performance of standard ML techniques
for real-time cell level QoE assessment. Section VI
presents the future prediction results generated from
Facebook’s PROPHET predictive model. Conclusion and
future work are discussed in section VIL.

II. OVERVIEW OF ML APPLICATIONS FOR CELLULAR
DATA

Application of machine learning techniques for im-
proving the operational efficiency of mobile networks
gained a lot of traction within this decade. Imran et
al. provided a comprehensive framework to leverage
the huge amount of network data available to create
end-to-end visibility resulting in an improvement in the
network’s response time to outages and failures [1].
We will review work done within the three core ML
paradigms: supervised learning, unsupervised learning
and reinforcement learning. Supervised learning schemes
have been applied in multiple domain within cellular net-
works, for instance, for mobility prediction [2], resource
allocation [3], load balancing [4], fault classification [5]
and cell outage management [6]. As an example, outage
detection is performed using k-nearest neighbor (k-NN)
algorithm that classifies a sample based on the class dis-
tribution within the k closest points measured via some
distance measurement, such as the Euclidean or the Man-
hattan distance [7]. Neural networks is another widely
used supervised scheme which has been employed in
the context of cellular networks for traffic prediction
and handover management in LTE networks. Using their
ability to maximize the multi-dimensional separation in
classification problems, support vector machines (SVM)
have been utilized for automatic outage detection in
cellular networks [8]. Partitioning algorithms, such as
decision trees, have also been applied to cellular network
data for self-organizing networks (SON) coordination
[9], and cell outage detection [10]. Predictions based
on models that leverage a user’s behavior in the recent
past paves the way for efficient network management.
Also known as recommender systems, this memory-
based technique has been applied to cellular networks
for cooperative cell outage management [11] as well as
proactive caching in information centric networks [12].

In the case of unlabeled data, there are various un-
supervised learning algorithms which aim to infer the
underlying relationship between the input parameters and
the outputs without the presence of ground truth data.

Some examples of unsupervised learning techniques
are clustering algorithms, self-organizing maps (SOM),
density-based clustering and outlier detection. K-means,
which is by far the most commonly used distance-based
clustering algorithm has been used extensively in wire-
less communication, for instance in proactive caching
[12] and cell outage management [13]. In [14], the
authors perform clustering and anomaly detection on a
broadband operator customer complaints data to identify
the spatiotemporal signatures of the faults and their
relationship to the geographical and time-based attributes
along with the fault causes. Self-organizing maps which
are used to visualize similarity relationships within large
dimensional data sets provided higher classification ac-
curacy as compared to K-means clustering for a variety
of synthetic and real-world datasets in [15]. Cellular
applications of SOM have been analyzed in handover
optimization [16] and anomaly detection using faults
data [17]. Reward based learning methodologies, also
known as reinforcement learning have also been useful in
policy updation by network nodes to recursively improve
their rewards. There is the expectation vs exploitation
trade-off where each entity decides whether they would
like to explore new system states in search of higher
award (exploration) or maximize their reward based on
the current known actions (exploitation). Reinforcement
learning has been used with Fuzzy Q-Learning process
for radio parameter configuration [18] and achieving
SON targets of coverage and capacity optimization [19].
Other stochastic models such as semi-markov model has
been used to predict spatio-temporal patterns in mobile
user mobility [20]. Based on the concept of participatory
sensing, such mobility prediction techniques using live
network data allows the operators to perform proactive
network management. Yet another ML scheme utilized in
mobile networks is transfer learning, which is based on
application of a training model from one spatio-temporal
region to another highly similar region based on some
predefined similarity index [21]. Transfer learning is
applicable on different kinds of ML objectives, including
regression, classification and clustering.

Now that we have presented a detailed overview of the
application of ML in cellular network optimization, it is
pertinent that we highlight how this work differentiates
with the existing literature. The novelty lies in defining
multi-dimensional user QoE measures that can be ac-
curately estimated from live network measures. Through
some intuitive feature selection and engineering, we have
demonstrated that from a large data set of live network
measures, we may select as few as 6-8 LTE metrics
for both real-time and future prediction of user QoE.
Additionally, the results identify LTE metrics that highly
influence the classification process and therefore provide
insights for the operator to perform remedial actions to
minimize the variation in those parameters that cause the



network to operate in low user QoE state.
ITI. OPERATOR DATA SET

The available cell level data set for this analysis comes
from an LTE operator operating at 800 and 1800 MHz
bands. The network performance data is collected for
7,000 cell sites over a duration of 5 weeks with a time
granularity of 1 hour between subsequent measurements.
This culminates to 17 million data points in total. Each
data point includes more than 80 LTE performance
counters and metrics, some of which are obtained in
real-time at different network nodes while others are
calculated by using multiple counters with a delay of
a few hours.

The available data set can be divided into following
sub categories:

i) Cell throughput counters: General cell counters
include measures such as available physical resource
blocks (PRBs) per hour, data volume transmitted at
medium access control (MAC) and packet data con-
vergence protocol (PDCP) layers during DL sessions,
and number of scheduled user equipments (UEs) per
transmission time interval (TTI) for every cell.

i1) Cell Level KPIs: The aforementioned real-time cell
counters are used to calculate different cell level key
performance indicators. Examples include downlink traf-
fic volume, downlink PRB utilization, average downlink
user throughput and downlink spectrum efficiency.

iii) Hybrid automatic repeat request (HARQ) KPIs:
Real-time HARQ counters yield the hourly number
of HARQ requests in both uplink and downlink at
different LTE modulation and coding schemes (MCS),
i.e. quadrature pulse shift keying (QPSK), 16-quadrature
amplitude modulation (QAM) and 64-QAM. These
counters are then utilized to assess the channel
propagation conditions for each cell in terms of the
calculated QPSK transmission ratio.

iv) Accessibility KPIs: These include success rate for
the radio resource control (RRC) connection requests
from the UE to the network. Additionally, we have the
EPS radio access bearer (ERAB) success rate which
reflects successful bearer assignment to the UEs.

V) Retainability KPIs: We analyze handover (HO)
success rates for inter-frequency (inter-freq) and intra-
frequency (intra-freq) HO attempts. Additionally, the
data provides UE context drop rate due to radio failures
and transport block failure rate values per hour for each
cell within the analyzed network region.

The first challenge in this work is identification of the
surrogate user QoE KPIs that are as close to an accurate
representation of the user experience as possible. In the
absence of user-level measurements, these KPIs should
give us a fair picture of the average user QoE within a
cell’s coverage area. With the help of domain experts, we
shortlist three user QoE KPIs for analysis: i) scheduled
user throughput, ii) inter-frequency HO success rate, and
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Fig. 1. Box Plot distributions for the user QoE KPIs.
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Fig. 2. Frequency Chart of the Low Inter- and Intra-Frequency events
v/s Hour of the day.

iii) intra-frequency handover success rate. The user QoE
KPIs are determined by taking the mean over all users
in a cell for each hourly time frame. The distribution of
the user QoE KPIs for the 800 MHz band is presented as
Fig. 1. To analyze any possible correlation or dependence
between the inter-freq HO success rate and intra-freq HO
success rate KPIs, we investigate the KPIs’ trends with
respect to time of the day. For this purpose, we look at
the total number of inter-freq and intra-freq HO failures
for each hour. We observe contrasting trends for the
inter and intra-frequency failures (when success rate <
98%) at different hour intervals. Fig. 2 reveals that while
the inter-frequency HO failures occur in high numbers
during peak data load hours, the trend does not hold for
intra-freq HO failures. This may be a direct effect of high
average user mobility in low traffic hours. Additionally,
during busy hours, network is more likely to be in high
utilization, and hence more preponderance of inter-freq
HO, hence more such HO failures.

The next task is to filter out features (or predictors)
for the user QoE analysis that cover all the available
counters and performance measures while avoiding re-
dundancy in the selected feature set. The Spearman
rank correlation between the user QoE KPIs and the
selected feature set is given in Fig. 3. For the scheduled
user throughput, we observe that higher percentage of
hybrid ARQ transmissions with QPSK modulation in a
cell has the strongest negative impact on the average
throughput. Transport block failure rate, which occurs
when a user is out of coverage, understandably also has a
significant negative correlation with the user throughput.
For the inter and intra-frequency HO success KPIs, we
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Fig. 4. UE QoE Assessment and Network Management Framework.

have their relevant load metrics, which are the number
of corresponding HO requests as the major correlated
metric. For the mobility-based HO success measure (i.e.
the intra-frequency HO success rate), high cell load
(PRB utilization) also impacts the HO success rate.

IV. QOE ASSESSMENT FRAMEWORK
Fig. 4 illustrates our proposed user QoE assessment

framework based on the selected user QoE KPIs and the
predictor set with the dotted area depicting the scope of
the analysis in this paper within the larger framework.
The main idea behind the framework is to present end-
to-end visibility from real-time data collection to user
QoE prediction and proactive mechanisms to address
high influence predictors that push cell level performance
to unsatisfactory levels. As seen from the framework,
live LTE metrics are fed in a cloud database. KPI
selection and KPI-metric mapping process can be ini-
tially performed by a domain expert and later simplified
through association mining to remove redundant KPI-
metric relationships from the data being fed to the model.
We employ two models: one predicts real-time cell QoE
state and the other assesses time series trends to predict
the cell QoE state in both near and long-term future time
frames. The results that include QoE states and predictor
importance for each cell are fed in the SON engine
and concept drift block. The SON engine performs
remedial actions to uplift a cell from Low QoE state to

High QOoE state. Based on the root cause, these actions
may involve antenna tilt optimization, load balancing
through cell individual offset (CIO) bias and offloading
users to Wi-Fi or other access networks. Concept drift
involves time-evolving stream classifiers that employ
a drift detection mechanism using sliding window ap-
proaches and process a limited amount of incoming data
to detect changes and correspondingly react in real time.
Using techniques such as ensemble classifiers, this block
performs drift detection and updates the classifiers in the
models without having to re-train on the entire data set.

V. REAL-TIME USER QOE PREDICTION

In this section, we provide results and analysis to
evaluate the following hypothesis: "Can we employ ma-
chine learning algorithms to accurately predict the real-
time user QoE state of a given cell from selected LTE
metrics?". For this purpose, all the 17 million data points
are distributed in a user QoE class that is dependent on a
threshold for each of the user QoE KPI. Once again, we
utilize the domain experts’ knowledge to define binary
user QoE states ("High" and "Low") with the following
demarcation levels: mean user scheduled throughput
considered High if greater or equal to 10 Mbps and Low
otherwise; mean inter- and intra-frequency handover suc-
cess rates considered High if greater or equal than 98%
and Low otherwise. This corresponds to a total of 23 = 8
user QoE classes. The class data distribution shown in
Fig. 5 reveals that the available data is highly skewed
(about 83%) towards the HHH user QoE class which
corresponds to the cell sites satisfying the QoE criteria
for all the three KPIs in the hourly time frame. The
QOoE states are represented as QoE; QoE,QoEj3, such that
QoE,; = {H,L}, where "H" and "L" represent High and
Low user QoE states respectively. Similarly, the ordered
subscripts 1,2,3 denote the mean hourly scheduled user
throughput, inter-frequency HO success rate and intra-
frequency HO success rate respectively.

Now, to simplify the multi-class classification and
enable better understanding of the influential predictors
for each user QoE KPI, we divide the problem into
three binary classification sub-problems, one per QoE
KPI. To observe peculiar frequency dependent behaviors,
we develop models separately for 800 and 1800 MHz
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data. Stratified sampling is performed on the training
data set for each of the six models (3 user QoE KPIs x
2 frequency bands) to enable balanced representation of
High and Low classes in the training data. Real-time user
QoE class prediction is performed using four standard
techniques, namely: i) deep neural networks (DNN), ii)
generalized boosted trees (GBM), iii) k nearest neighbors
(kNN), and iv) logistic regression (LR).

Fig. 6 displays the model prediction results when
unseen data (test data set) is passed through the trained
models for the user QoE KPIs at 800 GHz. Due to
the skewness in test data class distribution, we use the
area under the receiver operating characteristic curve
(AUROC) as the measure for model evaluation. The
boosted trees (GBM) method outperforms other models
in prediction of the QoE state for scheduled throughput
and inter-freq HO success rate. While these two KPIs are
predicted quite accurately from the selected LTE metrics,
we observe that the intra-freq HO success rate KPI is
not modeled efficiently with the selected attributes. Since
this KPI is related to how well mobile users transition
from one cell to another, GPS based user-level statistics
such as individual speed would be a more relevant
measure for predicting intra-freq HO success rate.

Fig. 7 depicts the relative influence of the predictors
for the training models generated via gradient boosted
trees. The measure is an indication of the relative fre-
quency of the usage of a predictor in the tree splitting

process. From the predictors’ relative influence, we
see that the primary distinguishing features between a
High and Low throughput cell are percentage of QPSK
transmissions in hybrid ARQ and cell load expressed
as downlink PRB utilization. To increase the user QoE
through a higher average scheduled throughput, an LTE
operator may focus on small cell deployment / SON
strategies that improve the channel conditions especially
for cell edge users. Moreover, intelligent load balancing
schemes may alleviate highly loaded cells during peak
hours thereby reducing cell congestion and improving
overall user QoE. For the inter-freq HO success, the
number of inter-freq HO requests is the primary dis-
tinguishing feature between High and Low performance
cell. We observe multiple factors having significance
feature importance for intra-freq HO success rate in
the trained GBM model. The dependence on a large
number of features contributes to the inability of the
boosted trees model to differentiate between High and
Low performance. Additionally, for intra-freq HO, the
model performance is expected to improve if average
mobility statistics are incorporated while training the
models.

VI. FUTURE USER QOE PREDICTION

In this section, we discuss the results from a time
series prediction model with the aim to estimate the fu-
ture user QoE states from current LTE metrics and QoE
KPI values. The analysis was performed both for short-
term and long-term time series predictions. We employ
a recently proposed open source time prediction model
by Facebook, known as PROPHET [22]. PROPHET
is a modular time series regression model with three
components: trend, seasonality and holidays (eq. 1 in
[22]). It outperforms the prior state-of-the-art automatic
prediction models, such as ARIMA (Auto-Regressive
Integrated Moving Average), by virtue of incorporating
weekly and seasonal trends, and reducing errors arising
from trend variations. The model is flexible in accom-
modating seasonality effects and yielding interpretable
insights for future parameter estimation.

As a case study, we evaluate the PROPET model on
four diverse cells within the LTE network. The four cells
capture a diverse variety of propagation environments,
user density and mobility scenarios. The cells labelled
from 1 to 4 hereon have the following propagation
conditions: Cell 1 - suburban residential, Cell 2 - rural
with a close by highway, Cell 3 - dense urban near city
center, and Cell 4 - suburban with a close by highway.
Future forecast modeling via PROPHET is performed
both for immediate short-term as well as distant long-
term QoE prediction. For the short-term prediction, we
train the PROPHET model on a five-week LTE data set
and predict the three user QoE KPIs for the coming two
days. The same data is used for long-term prediction,
the only difference being that instead of predicting the
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immediate future, we predict the QoE performance for
two days which are ten weeks in future from the last
sequential training data point.

TABLE I
PROPHET MODEL ACCURACY ON QOE KPIs AND KEY
PREDICTORS
QoE KPI/Predictor Timeframe | Cell RMSE
1 2.7 Mbps
2 8.7 Mbps
Scheduled UE throughput Short-Term 3 3.7 Mbps
4 7.7 Mbps
1 0.09
2 0.14
QPSK Percentage Short-Term 3 011
4 0.09
1 0.03
e 2 0.02
PRB Utilization Short-Term 3 0.05
4 0.04
1 4.6 %
2 1.8 %
Intra-freq HO Success Rate | Short-Term 3 1%
4 2.4 %
1 6.5 Mbps
2 6.8 Mbps
Scheduled UE throughput Long-Term 3 2.6 Mbps
4 8.2 Mbps

The PROPHET modeling for scheduled user through-
put is illustrated for the four selected cells in Fig. 8. We
can notice that while the short-term prediction (Fig. 8a)
captures hourly and weekly throughput trends, the long-
term future QoE prediction (Fig. 8b) demonstrates the

average increasing / decreasing trend and is less sensitive
to hourly throughput fluctuations. The root mean square
error (RMSE) results of the estimation accuracy for a
few combinations of KPI and time frames are given in
Table I. As evident from the presented RMSE values,
the PROPHET model can capture the future trends
for both the user QoE KPIs as well as the influential
predictors. We do not include inter-freq HO prediction
results because of the sparsity in the training data vector
caused by a large proportion of time series data having
nil inter-freq HO requests. The estimation errors are high
for rural and suburban cells with fast user traffic due
to presence of highways. Long-term prediction yields
lower RMSE for Cells 2 and 3 because a larger time
period allows better fitting of the trend component with
a lower uncertainty interval. However, in case of Cell 1,
the long-term prediction errors are high due to a large
increasing trend slope. The five-week data throughput
measurements for Cell 1 overestimated the throughput
gradient for the next 10 weeks. The actual throughput,
on the other hand, could not maintain the positive trend
suggested by PROPHET, which eventually resulted in
larger RMSE values.
VII. CONCLUSION

This paper has presented an approach for real-time
user quality of experience estimation through surro-
gate LTE performance KPIs predicted through machine
learning techniques. Current network management is
performed in reactive mode, for instance in response



to MDT reports or outage alarms in the network’s
operations and management (O&M) dashboards. Our
work addresses this issue by utilizing ML techniques
that enable network operators to detect low performing
cell sites in a timely manner. In the proposed end-to-
end network management framework, live LTE metrics
collected at cell sites are stored at a centralized server
from where they are fetched and filtered to prepare
database for QoE model training. To test our hypoth-
esis, we develop separate models on an LTE operator’s
data for the three user QoE KPIs, namely, scheduled
user throughput, inter-frequency handover success rate
and intra-frequency handover success rate. For real-
time QoE prediction, we compare four machine learning
techniques and observe that the gradient boosted trees
method yields highest prediction accuracy with AUC
scores of 0.87 and 0.95 for scheduled throughput and
inter-frequency handover success rate respectively. The
model training for intra-frequency handover success rate
lacked reliability because mobility related information
was not available in the data set. The trained models
also yield relative influence measure of the predictors for
the QoE KPIs. This provides insights to the operator for
re-aligning the proactive measures in order to curb the
effects from these highly influential predictors. For future
QoE KPI and predictor estimation, we use Facebook’s
PROPHET model which captures the hourly fluctuations
and weekly trends with high accuracy, particularly for
cells operating in dense urban regions. In summary,
this case study presents a strong case for leveraging
well established and powerful tools from the domain
of machine learning and data analytics for proactive
network management and user QoE enhancement.
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