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Abstract—Relay nodes (RNs) deployment with wireless back-
haul in future mobile networks is considered a promising solution
to enhance the indoor coverage region of regular base stations,
overcome shadowing dips, and provide a very high capacity and
Quality of Service (QoS). Relay node cell footprint is limited
by low transmission power which may not allow it to carry a
significant share of the traffic load, thus undermining the gains of
emerging ultra-dense heterogeneous networks (HetNets). Hence,
cell association in a relay-enhanced scenario is a key design task,
and has become a very interesting research topic over the past
few years. This paper develops artificial intelligence empowered
self-organizing network (SON) solution to optimally distribute
users among relays and macro cells in an automated way such
that holistic network performance is optimized. Contrary to
existing studies, this work presents a novel idea of traffic service
class based cell individual offset (SCIO) to further enhance the
gains achieved from deployment of relay nodes. Employing an
LTE system level simulator, for relay-enhanced scenario with
a traffic mix having distinct QoS requirements, we observe
that reinforcement learning based strategy coupled with SCIOs
can yield significant gain in terms of users satisfaction scores,
cumulative system payload throughput and reduction in signaling
overhead when compared with the genetic algorithm based
scheme and current industrial practice of fixed CIOs.

Index Terms—Relays, HetNets, 5G, Heterogeneous Networks,
CIOs.

I. INTRODUCTION

Fueled by the needs of high data throughput, reduced
latency and improved indoor coverage, network densification
through small cells (SCs) is emerging as a promising paradigm
to bring the idea of infinite capacity and zero latency to reality
in cellular networks [1]. Next generation networks such as 5G,
composed of umbrella cells (macro cells) and hot-sport cells
(small cells), are envisioned to be based on heterogeneous
architectures orchestrated by self organizing networks [1].
Such networks will offer continuous/ubiquitous connectivity
through the macro-cell layer with tailored additional capacity
through the small cell layer. Deploying more base stations
(BSs), or cells, within the same geographical region increases
the spatial spectral efficiency and offers more capacity due to
the shrunk BS footprints. At the same time, mobile networks
are witnessing and explosive growth in data demand, driven
by content rich applications (according to Cisco, video content
will be 82% of global Internet traffic in 2021) with 80% of traf-
fic being indoor. To this end, industry pundits have identified
the crucial role of indoor SCs to cater for this traffic and amass
the incurred profit, with an ambitious forecast of SCs spread.
However, to date, mass deployments of indoor SCs remain

elusive. The main hinder associated with the deployment of
SCs is the provisioning of a backhaul connection to the core
network. Such backhaul connections are very exigent in terms
of capacity, latency, and reliability and often come at a very
high cost. Another key challenge is efficient management of
this complex dense HetNet in a cost effective way when 70
millions SCs are expected to be deployed by 2025. Connecting
the SC BSs to the macro base station via wired backhaul links
is the most common scenario. Such SC BSs, also called pico
base stations, are deployed by the operators and require high-
quality and low latency backhaul connection since they are
aimed to cater large number of users with commercial grade
QoS. Currently, the only wired solution that offers the required
attributes is direct optical fiber; however, these are rarely
available network wide and deploying such a solution would
require cumbersome trenching and laying fiber at an inhibitive
and very costly scale. Hence desirable alternative is a wireless
backhaul solution. SCs employing wireless backhaul, also
called relay nodes (RNs), leverage the underutilized spectrum
that is not useful for the front haul. There is no need for
excavations to install fiber and the location of the small cell
can be easily changed to improve the service.

Some recent papers have studied performance of various
LTE relay configurations [2]-[6] and observed that relay
deployment achieves significant gains over conventional macro
only deployment. However, even with a targeted deployment
where these relays are placed in high-traffic zones, most users
will still receive the strongest downlink signal from the tower-
mounted macrocell due to the disparity in the downlink trans-
mission powers of the macro cells and relays. Therefore, there
lies the opportunity of biasing the serving station assignment
toward RNs through cell individual offsets (CIOs) to expand
relay cell range and, thus, increase the gains achievable by
RNs. Most works in the literature on CIO have considered
picocell deployments like [7], [8] with wired backhaul. Few
works like [9]-[11] have focused on optimizing CIO for relay
based networks with wireless backhaul. However, they do not
consider class based CIOs to exploit diversity in traffic service
profiles of users as we have proposed to do.

Moreover, it is important to model the relation between the
front-end activity of the relay and the signalling overhead,
an aspect that is missing from current literature, to quantify
the gains and losses incurred by introducing a relay in the
network. The gains are mainly the improved capacity for the



users while the losses are mainly the signalling overhead due
to S1 interfaces in the Uu interface of the macro cell. The relay
backhaul is encapsulated in the air interface channel of its
donor macrocell and hence the backhaul capacity of the relay
node depends on the radio channel capacity of the macrocell.
The present study considers jointly the SC radio access and
the wireless backhaul that is encapsulated in the macro cell
radio access. In particular, we investigate following research
questions pertinent to relays based HetNets:

« How to autonomously manage wireless backhauling
based relay HetNets in a cost effective manner?

e How can we stretch the capacity of the heterogeneous
network by exploiting the diversity of services that are
not born equal?

e How can we do that while complying with current
network interfaces and procedures?

In light of aforementioned challenges, this paper presents
an Al based SON solution complemented with service class
based CIO paradigm. The contributions of this paper can be
summarized as follows:

1) We propose an Al based learning solution that dynami-
cally adapts relays to traffic, radio, and network changes
for improving network-centric and user centric perfor-
mances. Another key novelty is that unlike state-of-the-
art practice of using same CIO for all UE traffic classes,
it leverages the novel concept of service class based CIOs
that is aware of disparity in traffic profiles of users for
further capacity enhancement.

2) Based on the current network conditions, the proposed so-
lution makes it possible to prioritize one of the following
objectives: Maximization of the geometric mean of the
users payload throughput, the number of satisfied users or
the mean satisfaction score of all users and solve formu-
lated optimization problem using reinforcement learning
(RL) and genetic algorithm (GA).

3) We perform a comparative analysis of proposed solution,
through multi-tier system level 3GPP compliant rigorous
simulations. Four performance metrics are considered to
evaluate network-centric and user-centric performances.
Results indicate reinforcement learning based solution
with SCIOs achieve maximum performance in all per-
formance metrics.

II. SYSTEM MODEL

Network topology considers at least one randomly deployed
indoor relay in the coverage area of a macro cell. Three
separate frequency bands are considered; one for UE to macro
link, one for UE to relay link and one for relay to macro link.
Macro cells use directional antennas with three sectors per site
while relays employ directional antenna for wireless backhaul
and omni directional antenna for front haul links. An LTE like
OFDMA based system with resources divided into physical
resource blocks (PRBs) of fixed bandwidth, is assumed. For
conciseness, the downlink direction is chosen for the analysis.
Relays connect to the macro cells from which they receive

strongest signal strength. The set of users connected to cell ¢
is determined by the user association criterion:

Uj:={Vuel |[j=arg glgg(PS + PScro.) (D

where C is set of all macro cells (M) and relays (R) in the
network i.e., C = MUR, P{ is the true reference signal power
in dBm received by user u from cell ¢ and P§q/p ,, in dB
is the SCIO that is primarily used to offset lower transmit
power of relays to transfer more load to them depending upon
the traffic class of the users. There are two SCIOs per BS
(two for each macro and relay) corresponding to the two
traffic classes (VOIP/FTP) considered in this paper without
loss of generality. VOIP users will use corresponding SCIOs in
association decision and FTP users will users their respective
SCIOs. The signal to noise and interference ration (SINR) s
of user u when associated with a macro cell m is defined as
the ratio of reference signal received power P, by user u
from cell m to the sum of reference signal received power by
user u from all macro cells ¢ such that Vi € M/m, and the
noise variable «:

Pm
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where P/™ is the transmit power of macro cell m, G, is
the gain of user equipment, G is the gain of transmitter
antenna of the macro cell m as seen by the user u, ¢§ is
the shadowing observed by the signal, « is the path loss
constant, d;' represents the distance of user location of u from
macro cell m, (3 is the pathloss exponent. Likewise SINR ~;,
achievable by user when connected to relay r is given as:
T
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The rate achievable by the user when connected to macro
cell m is given as:
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where w,,, is the available bandwidth on macro to UE link.
Similary when connected to relay, end-to-end rate for this two
hop link is given as [2], [6]:
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where 7, is SINR of wireless backhaul link between relay r
to which UE is connected and that relays’s donor macro cell
m: - pm o
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and w,, and w,,, are the bandwidths assigned to relay to UE
and macro to relay links respectively. The S1 (control/user)

signaling overhead (in terms of PRBs) for all UEs connected
to relay is subtracted from total number of PRBs assigned
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for each respective relay to macro wireless backhaul link
to analyze the impact of UE service classes on backhaul
signalling load. In this work, we focus on a fixed relay that
targets indoor users and on manipulating the front-end of the
relay (i.e., the radio access towards indoor users). Hence,
optimization of donor cell selection is out of scope of current
work.

IIT. AI APPROACHES

Two optimization techniques have been utilized (i) rein-
forcement learning and (ii) genetic algorithms. Three problem
formulations (P1, P2, P3) are devised depending upon variant
of the objective function: (i) P1 that maximizes number of
satisfied UEs (ii) P2 that maximizes geometric mean of UE
payload throughputs and (iii) P3 that maximizes logarithmic
sum of satisfaction scores.

A. Reinforcement Learning Approach

In reinforcement learning approach, BSs (macro as well
as relay nodes) optimally, learn their SCIOs depending upon
network conditions. This is formulated as a Q-learning process
which consists of a set of states and actions and aims at
finding a policy that maximizes the observed rewards over
the interaction time of the agents. All BSs are agents that
explore their environment, observe their current state, and
take a subsequent action according to their individual decision
policy. Each BS maintains an individual Q-table based on
its acquired knowledge. The goal of every BS is to find an
optimal policy for every state in such a way that the cumulative
reward is maximized. The Q-learning problem can, thus, be
formulated as follows:

Agents: All BSs in the network

States: Any agent can be in any of the two states:

1
s¢ =
2

where U, is set of all users in cell ¢, T is achievable payload
throughput of user v in cell ¢, Ty 4, is minimum required
throughput for user u, @ defines the QoS KPI that operator
wants to maintain, and 1(.) denotes indicator function.

Action: The actions of a cell are set of possible
SCIO settings represented by the vector a° =
[CIOX{JIP,CIOXQOIP,CIOX:?IP,...,CIOXS{P,CIO&TP
,C’IOEQTP,CIOE;{P,...,C’IOCF,‘TO‘P] where O is set of
possible CIO offsets.

Reward: The reward estimated by cell ¢ in state s® when
taking action a® is computed as follow depending upon the
problem formulation (P1, P2 or P3):
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Q-Table:The Q-table will be updated according to the follow-
ing, when an action a° is taken by agent (BS):

Qi11(s7,a7) =Qi(sf, ap) + a(rep+
ymax Q(siy1,a%) — Qf(sf,a7))  (13)

where o = 0.5 is the learning rate and v = 0.9 is the discount
factor, Qf is the Q-table of cell ¢ at time ¢, and @7, is the
new Q-table with updated entry according to action taken (a®).

B. Genetic Algorithm

Genetic algorithms represent a class of algorithms within
the field of artificial intelligence, which is derived from the
natural evolutionary systems and are one of the important
heuristic algorithms available for solving complex combina-
torial problems. Genetic algorithms use methods found in the
evolutionary process such as survival of the fittest, population
mutation, death and migration process. Using these processes,
the genetic algorithm moves through the solution spaces trying
to find the feasible solution space. This makes it an attractive
choice given the fact that for a multi-variable problem with a
large variable count and enormous search space, knowledge of
feasible solution space is extremely rare. It is also important to
note that the genetic algorithm starts from a random parameter
set in the solution space, therefore, for each run the time to
find the feasible space is different. However, once found, the
algorithm can quickly move towards the optimal solution in
the feasible space. A generic pseudo code for the genetic
algorithm is presented in [12]. The GA is utilized to solve
following optimization problems:
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Four performance metrics are considered:

S UTE = Tuwm) >
Uc

« Net Payload (NP): It is the sum of payload throughputs
of all UEs in the network given as:

NP=>"N"T¢
C U,

(18)



o Average Backhaul Signaling Overhead (SO): This is
the signalling load generated by all users connected to
relays compared to the payload generated by the same
users. It is given as:

W | Z T (19)

Where S, ,,, is signaling load of all users connected to
relay r (U,.) that is using wireless backhaul of macro cell
m, T’ ., 1s sum payload throughput of all users connected
to relay r that is using wireless backhaul of macro cell
m.

o Percentage of Unsatisfied Users (PUU): This is the
percentage of users that do not reach their minimum
required throughput of all users in the network. It is given

as:
PUU = 07 2 ZZ UTE < Ton) (20)

o Average Satisfaction Score (SS): This is a calcu-
lated score that compares the gap between the achieved
throughput and the minimum requirement. It is important
to distinguish (or classify) the level of dissatisfaction of
users; for instance, a user achieving 90% of the target is
much more satisfied than the one achieving 20%. It is
given as:

min(Ts, Ty tn)
\CIZIU |Z @1

IV. SIMULATION RESULTS

Simulation results leverage RL approaches with three ob-
jective functions (RL-P1, RL-P2, RL-P3), GA approaches
with three objective functions (GA-P1, GA-P2, GA-P3),
macro only and the best performing Fixed SCIO settings
found by trying all possible fixed SCIO settings.

A. Simulation Settings

We generated typical macro and relay based network
and UE distributions leveraging LTE 3GPP standard
compliant network topology simulator in MATLAB. The
simulation parameters details are given in Table I. We
consider a sectored cellular network wherein each of the
macro base station has three cells and each cell has one
indoor relay placed at an arbitrary location. Snapshot of
network topology at a random instant is shown in Fig. 1
wherein circles represent outdoor UEs, square represent
indoor UEs, green color specify satisfied UEs, red color
denote unsatisfied UEs, dark blue triangles denote relays
while light blue diamonds represent macro BSs. The
network topology consists of 7 sites with wrap around
technique. Thus, though there are 21 macro cells (and
21 relays) in total, the wrap around technique mitigates
the boundary effect and helps us to simulate interference
as in infinitely large network. UE’s are distributed non-
uniformly in all the sectors (25 UEs per cell on average)
with 50% indoors and 50% outdoors. To model realistic
networks, UEs were distributed non-uniformly in the

Fig. 1. Snapshot of Network Topology

TABLE 1
SIMULATION PARAMETER SETTINGS
System Parameters Values
Number of Macro Base Stations 7 with 3 Sectors per Base Station
Relays per Sector 1 (All Indoor)
Number of UEs per Sector 25

LTE System Parameters Frequency = 2 GHz, Bandwidth = 20 MHz for all three links,

ISD: 500m, Topology= Hexagonal

UE Traffic Classes Voice: Required Throughput 56 kbps, Payload: 160 bytes

FTP: Required Throughput 2048 kbps, Payload: 1000 bytes

Macro Cell Parameters Tx Power: 46 dBm, Tilt:120

Small Cell Tx Parameters Tx Power = 30 dBm, SCIO = -20 to 20 dB

Schedular Round Robin
Macrocell Antenna Directional Antenna with 17 dBi gain
Relay Antenna Backhaul: Directional Antenna pointing towards closest Macro

Cell
Fronthaul: Omni Antenna

QoS Throughput Threshold & 90%

Path loss Model [14] Macro to UE Link:

— LOS scenario: PL LOS (R)= 103.4+24.2log10(R) where
R is distance in km.

— NLOS scenario: PL NLOS (R)= 131.1+42.8log10(R)

— LOS Probability function: Prob(R)=min(0.018/R,1)*(1-
exp(-R/0.063))+exp(-R/0.063)

— Lognormal shadowing standard deviation: 10 dB

— In case of an indoor UE, an additional wall penetration
loss of 18dB has to be considered.

Macro-Relay Wireless Backhaul link:

— LOS scenario: PL LOS (R)=100.7+23.5log10(R)

Indoor Relay access antenna - UE link:

— Relay to UEs inside the same cluster building: L=
127+30l0g10(R)

- Relay to UEs in different cluster buildings: L=
128.1+37.6log10(R)

— Lognormal shadowing standard deviation: 10 dB for link
between relay and relay UE, and 8dB for other links

— The penetration loss of the walls separating buildings is
18dB.

coverage area such that a fraction of UEs were clustered
around randomly located relays in each sector. Monte
Carlo style simulation evaluations were used to estimate
average performance of the proposed solution. Without
loss of generality, we considered two UE traffic require-
ment profiles corresponding to 56 kbps (VOIP) with 160
bytes payload packet size and 2048 kbps (FTP) with 1000
bytes payload packet size. S1 control overhead (S1-U:
User Plane and S1-C: Control Plane) calculation for relay
to macro wireless backhaul is implemented in accordance
with [13]. VOIP traffic throughput requirement is low
(56Kbps for VOIP) but creates large S1-U signaling
overhead while converse is true for FTP traffic with
large throughput requirement (2048 kbps). VOIP users
throughput is capped at maximum (56 kbps).

B. Results with SCIO Approach

Fig. 2 plots the cdf for Macro-Relay backhaul signaling
overhead with total network payload throughput (NP)
illustrated in the legend of this figure. It is observed that
in terms of total network payload throughput, all variants
of optimization objectives outperform best fixed SCIO
settings as well as macro only scenarios (for macro only,
NP is 0.59 Gbps). The maximum total network payload
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Fig. 2. Macro-Relay Backhaul Signaling Overhead CDF

occurs with RL-P2 and GA-P2. The reason being P2
problem formulation includes maximization of geometric
mean of UE payload throughputs in its objective function.
As aresult, both Al techniques (RL and GA) strive to find
such SCIOs that results in increase in overall UE payload
throughputs. While looking at the CDF, we observe that
considerable signaling overhead is observed for best fixed
settings which for this case was observed when VOIP
UEs are aggressively shifted to indoor relays and FTP
to outdoor macro BSs. Since VOIP UEs have small
packet size, their S1-U signaling overhead ratio is very
high around 85% which considerably increases signaling
overhead of Macro-Relay backhaul link. Moreover, RL-
P2 and GA-P2 achieved maximum payload throughputs
at cost of higher signaling overheads.

Fig. 3 plots upto 30th percentile of satisfaction scores
CDF for the UEs with percentage of un-satisfied UEs
(PUU) illustrated in the legend of this figure. By looking
at PUU values, it is observed that RL-P1 and GA-
P1 achieve lowest percentage of un-satisfied UEs due
to inclusion of the satisfaction ratio in their objective
functions. Hence, both RL-P1 and GA-P1 find such
combinations of SCIOs that reduce number of unsatisfied
UEs in whole network. A UE is marked as satisfactory
if it’s achievable payload throughput is at least equal to
its required throughput (56kbps for VOIP and 2048 kbps
for FTP). From the cdf curves for the 30th percentile of
satisfaction scores for the UEs, it can be seen that with the
macros only scenario, UEs attain less satisfaction scores
as compared to relay schemes. With macro only around
28% UEs have satisfaction score less than 100% (un-
satisfied) and 72% are satisfied. RL-P3 scheme owing to
its objective function outperform all others with 7% UEs
having satisfaction score less than 100% (un-satisfied)
while 93% UEs are satisfied (100% satisfaction score).
If we compute complimentary CDF, we observe with
macro only, around 88% of UEs have satisfaction score
greater than 50% while with RL-P3, 99% of UEs have
satisfaction score greater than 50%.

Satisfaction Score (%) CDF with SCIO Approach
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Fig. 3. 30th Percentile Satisfaction Score CDF

C. Results with single CIO per BS and cell reselection
priority

The aforementioned results in Fig. 2 and 3 are valid
when SCIO approach is implemented in the network.
In current 3GPP standardized networks, multiple biases
per cell can be signaled to UEs through the concept of
dedicated CIO signaling and Access Group method [15].
However, as viable alternative, we also evaluated results
considering single CIO per BS (Macro/Relays) coupled
with the cell reselection priority. The CIO can be used
by a cell to attract or deter all users equally while the
cell reselection priority is a dedicated parameter to a
particular user to influence the cell selection decision.
Cell reselection priority is used to prioritize specific
RF carrier depending upon service being used by UE
(VOIP Class/FTP Class). The Subscriber Profile ID for
RAT/Frequency (SPID) is an index standardized in 3GPP
referring to user information (e.g mobility profile, service
usage profile) that can be used for this purpose. These
can be jointly used to minimize the signalling messages
required to achieve the desired selection of all users
while distinguishing between different user services and
complying with current network standards. As earlier, two
optimization techniques have been utilized (i) Reinforce-
ment Learning and (ii) Genetic Algorithm. For brevity, re-
sults with only P2 variant i.e., maximization of geometric
mean of UE payload throughputs are presented here. Four
schemes are considered: Reinforcement Learning (RL),
Genetic Algorithm (GA), Fixed CIO settings (Fixed) and
Macro Only (MO). Both RL and GA optimize CIO values
for macros and relays within range of 0 to 20 dB as well
as RF carrier (RF1 for outdoor macro, RF2 for indoor
relays) priority in cell selection for each of the two classes
of UEs present (VOIP class / FTP class).

Fig. 4 plots the cdf for Macro-Relay backhaul signaling
overhead with total network payload throughput (NP)
illustrated in the legend of this figure. It can be observed
that RL based scheme outperforms GA, Fixed CIO set-
tings as well as macro only scenario (for macro only,
NP is 0.67 Gbps). It is interesting to observe that fixed
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CIO setting perform better than GA scheme. However this
observation will be misleading if we don’t consider other
metrics because as per cdf curves in Fig. 4 and 5, fixed
CIO scheme achieves better sum payload throughput
albeit at cost of increased signaling overhead and number
of unsatisfied UEs. As per Fig. 4 and 5, we observe that
RL scheme perform best followed by GA scheme. By
comparing these with SCIO approach, it is concluded
that SCIO based strategy outperform state-of-the-art CIO
approach in all performance metrics considered in this
work.

V. CONCLUSIONS

In this paper, we have presented a novel concept of
Al empowered smart relays with wireless backhaul that
exploit the diversity of the traffic profiles of UEs to
maximize the total system payload throughput, users
satisfactions scores and reduced singling overhead. Three
optimization problems are formulated and solved us-
ing reinforcing learning strategy and genetic algorithms.
Simulation results show the novel idea of service class
based CIO coupled with reinforcement learning based
strategy yield significant gains in terms of user-centric
and network centric performance measures as compared
to genetic algorithm based scheme and current industrial
practice of fixed CIOs. The proposed work can help
operators increase in revenue as result of increase in
capacity, QoE, and ratio of payload/signalling. Same
network infrastructure can generate "free" gain that does
not require experts time for network optimization since
Al can achieve it with zero-touch. Further work in this

area will investigate complexity analysis and optimality
gap of proposed schemes. Moreover, existing work will
be coupled with load balancing schemes within the relay-
enhanced macro cell and transforming optimization prob-
lems from reactive to proactive using big data.
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